Solve
Study
Textbooks
Guides
Join / Login
>>
Class 11
>>
Physics
>>
Work, Energy and Power
>>
Conservation of Energy
Conservation of Energy
Revise with Concepts
Conservation of Mechanical Energy
Example
Definitions
Formulaes
Law of Conservation of Energy
Example
Definitions
Formulaes
Application of Conservation of Energy
Example
Definitions
Formulaes
Maximum Compression and Maximum Elongation of Springs Using Energy Conservation
Example
Definitions
Formulaes
Problems on Springs
Example
Definitions
Formulaes
Law of Conservation of Energy- Problems L1
Example
Definitions
Formulaes
Law of Conservation - Problems L2
Example
Definitions
Formulaes
View more
Learn with Videos
Basics of Law of Conservation of Energy
7 mins
Law of Conservation of Energy
6 mins
Complex Problems Based on Conservation of Energy
8 mins
Problems Based Conservation of Energy for a Mass attached to a Spring - Horizontally
18 mins
Problems Based on Conservation of Energy for a Mass attached to a Spring - Vertically
9 mins
Problems Based on Energy Conservation When More than One Force is involved
15 mins
Maximum compression and maximum elongation of springs using energy conservation
16 mins
Problems Based on SHM with Spring Force - I
10 mins
Problems based on SHM with Spring Force - II
13 mins
Problem based on resultant of two SHMs
11 mins
Quick Summary With Stories
Law of Conservation of Energy
2 mins read
Law of Conservation of Energy_part 2
3 mins read
Principle of conservation of energy
3 mins read
Law of Conservation of Energy- Simple Problems
3 mins read
Problems Based On Conservation of Momentum - II
2 mins read
Maximum Compression and Maximum Elongation of Springs Using Energy Conservation
2 mins read
Important Questions
An object of Mass
$40Âkg$
is raised to a height of
$5m$
above the ground what is its potential energy? If the object is allowed to fall, find its kinetic energy when it is half way down.
Medium
View solution
>
Two masses of 10 kg and 20 kg respectively are connected by a massless spring as shown in figure. A force of 200 N acts on the 20 kg mass at the instant when the 10 kg mass has an acceleration of
$12$
towards right, the acceleration of the 20 kg mass is :Â
Medium
View solution
>
A rubber ball is dropped from a height of
$5m$
on a plane, where the acceleration due to gravity is not shown. On bouncing it rises to
$1.8m$
. The ball loses its velocity on bouncing by a factor of
Medium
View solution
>
A mass of
$0.5kg$
moving with a speed of
$1.5m/s$
on a horizontal smooth surface, collides with a nearly weightless spring of force constant
$k=50ÂN/m$
. The maximum compression of the spring would be
Hard
View solution
>
A meter stick is held vertically with one end on the floor and is allowed to fall. The speed of the other end when it hits the floor assuming that the end at the floor does not slip is
$(g=9.8m/s_{2})$
Medium
View solution
>
A particle is projected vertically upwards with a velocity
$v=gRâ€‹$
, where
$R$
denotes the radius of earth and
$g$
is acceleration due to gravity of the surface of earth. The maximum height ascended by the particle is
Medium
View solution
>
A particle of mass
$100g$
is thrown vertically upward with a speed of
$5m/s$
. The work done by the force of gravity during the time the particle goes up is
Medium
View solution
>
A man of mass
$M$
stands at one end of a plank of length
$L$
which lies at rest on a frictionless surface. The man walks to other end of the plank. If the mass of the plank is
$M/3$
, then the distance that the man moves relative to ground is :
Medium
View solution
>
A shell is fired from a cannon with a velocity
$VÂ(m/s)$
at an angle
$Î¸$
with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed
$($
in
$m/s)$
of the other piece immediately after the explosion is :
Medium
View solution
>
AÂ particle of mass 4m, at rest, explodesÂ into three fragments. Two of the fragments each ofÂ mass m are found to move with a speed v in mutually perpendicularÂ directions. The totalÂ energy released in the explosion is :
Hard
View solution
>