Solve
Study
Textbooks
Guides
Join / Login
>>
Class 11
>>
Physics
>>
Thermal Properties of Matter
>>
Conduction
>>
Conduction
Conduction
5 Mins
Physics
Language
Rate
NEXT VIDEOS
Convection
4 mins
Convection in Liquids
6 mins
Convection of Gases
9 mins
Radiation - I
18 mins
Radiation - II
7 mins
REVISE WITH CONCEPTS
Basic Knowledge of Conduction
Example
Definitions
Formulaes
Conduction - In form of Energy
Example
Definitions
Formulaes
Advanced Knowledge of Conduction
Example
Definitions
Formulaes
Thermal Conduction and Coefficient of Thermal Conductivity
Example
Definitions
Formulaes
Molecular Account of Conduction
Example
Definitions
Formulaes
Basic Knowledge of Heat Transfer - Conduction
Example
Definitions
Formulaes
View more
QUICK SUMMARY WITH STORIES
Introduction To Heat Transfer
2 mins read
Conduction
2 mins read
Conduction and Convection
2 mins read
Conductors and insulators of heat
3 mins read
Application of Trapped Air as Insulator
2 mins read
Conduction - in form of Energy
3 mins read
Conduction using Kinetic Model
3 mins read
Thermal Conductivity
2 mins read
Thermal Conductivity and its coefficient
2 mins read
Heat Conduction and Convection
3 mins read
Conduction - Mathematical Interpretation of Heat Current
2 mins read
Important Questions
A wall has two layers
$A$
and
$B$
, each made of different materials. Both the layers have the same thickness. The thermal conductivity of the material of
$A$
is twice that of
$B$
. Under thermal equilibrium, the temperature difference across the wall is
$36_{âˆ˜}C$
. The temperature difference across the layer
$A$
is
Medium
View solution
>
The dimensional formula for coefficient of thermal conductivity is:
Medium
View solution
>
Consider a compound slab consisting of two different materials having equal lengths, thicknesses and thermal conductivities
$K$
and
$2K$
respectively. The equivalent thermal conductivity of the slab is
Medium
View solution
>
Two rods
$A$
and
$B$
of different materials are welded together as shown in figure. Their thermal conductivities are
$K_{1}$
and
$K_{2}$
. The thermal conductivity of the composite rod will be :Â
Medium
NEET
View solution
>
Two rods of same length and material transfer a given amount of heat in
$12$
seconds , when they are joined in parallel. But when they are joined in series , then they will transfer same heat in same condition inÂ
Medium
View solution
>
The coefficient of thermal conductivity of copper is
$9$
times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?
Medium
View solution
>
The temperature of the two outer surfaces of a composite slab, consistingÂ of two materials having coefficients of thermal conductivity
$K$
and
$2K$
Â and thickness
$x$
and
$4x$
, respectively are
$T_{2}$
and
$T_{1}(T_{2}>T_{1})$
. The rateÂ of heat transfer through the slab, in a steady state isÂ
$(XA(T_{2}âˆ’T_{1})Kâ€‹)f,$
Â with
$f$
equals to
Hard
View solution
>
A slab consists of two parallel layers of two different materials of same thickness having thermal conductivities
$K_{1}$
and
$K_{2}$
. The equivalent thermal conductivity of the slab is :
Medium
View solution
>
Define coefficient of thermal conductivity.
Medium
View solution
>
Heat is flowing through two cylindrical rods ofÂ same material. The diameters of the rods are inÂ the ratio
$1:2$
and their lengths are in the ratio
$2:1$
. If the temperature difference between theirÂ ends is same, then the ratio of amounts of heatÂ
conducted through them per unit time will be :
Medium
View solution
>