SolveStudyTextbooksGuides
search-icon-header
search-icon-image
Use app
Login
  1. >>Class 11
  2. >>Applied Mathematics
  3. >>Limits and Continuity
  4. >>limit of a function
  5. >>Introduction to Limits II
image
play-icon

Introduction to Limits II

15 MinsApplied Mathematics
audioIcon

Language

smileIcon

Rate

NEXT VIDEOS
image
Algebra of Limits
6 mins
image
Basic Numericals on Algebra of Limits.
12 mins
image
Short Tricks to Find Limit of Rational Polynomial Functions
8 mins
image
Limits using Rationalization I
8 mins
image
Limits using Rationalization II
6 mins

REVISE WITH CONCEPTS

Introduction to Limits

ExampleDefinitionsFormulaes
>
Important Questions

Show that x→0lim​e1/x+1e1/x−1​ does not exist.

Medium
View solution
>

limx→1​(1−x)tan(2πx​) is equal to -

Medium
View solution
>

limx→0​(x21​−sin2x1​)

Hard
View solution
>

the value of xlim​0xsinx0​

Easy
View solution
>

Let α and β be the distinct roots of ax2+bx+c=0  then x→alim​ (x−α)21−cos(ax2+bx+c)​ is equal to-

Medium
View solution
>

Evaluate : limx→0​x(1+x)1/x−e​=?

Medium
View solution
>

If f(x)=logx​(logx), then f′(x) at x=e is

Medium
View solution
>

limx→1​1−x−2/31−x−1/3​ 

Hard
View solution
>

Evaluate
x→0lim​sin2x2​−1+cosx​​

Easy
View solution
>

Evaluate: x→0lim​(3ax+bx+cx​)2/x

Medium
View solution
>