Solve
Study
Textbooks
Guides
Use app
Login
>>
Class 12
>>
Maths
>>
Integrals
>>
Evaluation of Definite Integrals
>>
The value (s) of int0^1x^4 ( 1 - x )^4/
Question
The value (s) of
∫
0
1
1
+
x
2
x
4
(
1
−
x
)
4
d
x
is (are)
A
7
2
2
−
π
B
1
0
5
2
C
0
D
1
5
7
1
−
2
3
π
Hard
Open in App
Updated on : 2022-09-05
Solution
Verified by Toppr
Correct option is A)
Let
I
=
∫
0
1
1
+
x
2
x
4
(
1
−
x
)
4
d
x
=
∫
0
1
(
1
+
x
2
)
(
x
4
−
1
)
(
1
−
x
)
4
+
(
1
−
x
)
4
d
x
=
∫
0
1
(
x
2
−
1
)
(
1
−
x
)
4
d
x
+
∫
0
1
(
1
+
x
2
)
(
1
+
x
2
−
2
x
)
2
d
x
=
∫
0
1
{
(
x
2
−
1
)
(
1
−
x
)
4
+
(
1
+
x
2
)
−
4
x
+
(
1
+
x
2
)
4
x
2
}
d
x
=
∫
0
1
(
(
x
2
−
1
)
(
1
−
x
)
4
+
(
1
+
x
2
)
−
4
x
+
4
1
−
x
2
4
)
d
x
=
∫
0
1
(
x
6
−
4
x
5
+
5
x
4
−
4
x
2
+
4
−
1
+
x
2
4
)
d
x
=
[
7
x
7
−
6
4
x
6
+
5
5
x
5
−
3
4
x
3
+
4
x
−
4
tan
−
1
x
]
0
1
=
7
1
−
6
4
+
5
5
−
3
4
+
4
−
4
(
4
π
−
0
)
=
7
2
2
−
π
Video Explanation
Solve any question of
Integrals
with:-
Patterns of problems
>
Was this answer helpful?
0
0
Similar questions
Assertion
If
∫
f
(
x
)
1
d
x
=
lo
g
(
f
(
x
)
)
2
+
C
, then
f
(
x
)
=
2
x
Reason
When
f
(
x
)
=
2
x
then
∫
f
(
x
)
1
d
x
=
∫
x
2
d
x
=
2
lo
g
∣
x
∣
+
C
Hard
View solution
>
∫
(
1
−
x
4
)
3
/
2
1
+
x
4
is equal to
Hard
View solution
>
If
∫
x
(
1
+
x
e
x
)
2
(
x
+
1
)
d
x
=
lo
g
∣
1
−
f
(
x
)
∣
+
f
(
x
)
+
C
, then
f
(
x
)
=
Hard
View solution
>
If
0
<
α
<
π
/
2
then the value of
∫
0
α
1
−
cos
x
cos
α
d
x
is
Hard
View solution
>
The value of
∫
a
b
f
(
x
)
d
x
List 1
a
=
0
,
b
=
π
/
3
,
f
(
x
)
=
1
+
sin
x
x
a
=
1
,
b
=
1
6
,
f
(
x
)
=
tan
−
1
x
−
1
a
=
0
,
b
=
π
/
2
,
f
(
x
)
=
(
sin
x
+
cos
x
)
2
x
sin
2
x
a
=
0
,
b
=
π
/
4
,
f
(
x
)
=
(
sin
x
+
cos
x
)
2
x
2
sec
2
x
(
cos
2
x
−
sin
2
x
)
List 2
3
1
6
π
−
2
3
1
6
π
2
+
4
π
lo
g
2
−
3
π
(
2
−
3
)
+
lo
g
(
2
1
+
2
3
)
8
π
2
−
4
π
Hard
View solution
>
More From Chapter
Integrals
View chapter
>
Revise with Concepts
Evaluation of Definite Integrals by Substitution, and by Parts
Example
Definitions
Formulaes
>
Learn with Videos
Integration using Substitution - I
7 mins
Integration using Substitution - II
11 mins
Definite Integration by Parts
16 mins
Practice more questions
JEE Mains Questions
4 Qs
>
JEE Advanced Questions
1 Qs
>
Easy Questions
158 Qs
>
Medium Questions
537 Qs
>
Hard Questions
292 Qs
>
Shortcuts & Tips
Memorization tricks
>
Important Diagrams
>
Mindmap
>
Problem solving tips
>
Common Misconceptions
>