Question

Open in App

Verified by Toppr

Correct option is D)

Block moving upwards: Component of gravity Force & Friction both will be downwards.

Therefore acceleration, $a=(mgsinθ+f)$

$a=(mgsinθ+μN)$

$a=(mgsinθ+μmgcosθ)$

Therefore acceleration, $a=(mgsinθ+f)$

$a=(mgsinθ+μN)$

$a=(mgsinθ+μmgcosθ)$

$a=g(sin30+μcos30)$

$a=g(21 +31 23 )=g(21 +23 1 )a=g(23 3 +1 )=gsin30(1+μcot30)$

Block moving downwards: Component of gravity force & Ffriction will be downwards & upwards respectively.

Therefore acceleration, $a=(mgsinθ−μN)/ma=(mgsinθ−μmgcosθ)/ma=g(sin30−μcos30)a=g(21 −31 23 )=g(21 −23 1 )a=g(23 3 −1 )=gsin30(1−μcot30)$

Ratio is: $gsin30(1−μcot30)gsin30(1+μcot30) =(1−μcot30)(1+μcot30) =(1−1/3 )(1+1/3 ) =3 −13 +1 =23+1+23 =2+3 $

Therefore both Assertion and Reason are incorrect.

$a=g(21 +31 23 )=g(21 +23 1 )a=g(23 3 +1 )=gsin30(1+μcot30)$

Block moving downwards: Component of gravity force & Ffriction will be downwards & upwards respectively.

Therefore acceleration, $a=(mgsinθ−μN)/ma=(mgsinθ−μmgcosθ)/ma=g(sin30−μcos30)a=g(21 −31 23 )=g(21 −23 1 )a=g(23 3 −1 )=gsin30(1−μcot30)$

Ratio is: $gsin30(1−μcot30)gsin30(1+μcot30) =(1−μcot30)(1+μcot30) =(1−1/3 )(1+1/3 ) =3 −13 +1 =23+1+23 =2+3 $

Therefore both Assertion and Reason are incorrect.

Solve any question of Laws of Motion with:-

0

0