Question

3โˆš3x3+y3 is equal to

A
(3x+y)(3x23xy+y2)
B
(3xy)(3x2+3xy+y2)
C
(3x+y)(3x2+3xy+y2)
D
(3xy)(3x23xyy2)
Solution
Verified by Toppr

Given, 33x3+y3=(3x)3+y3
Since, x3+y3=(x+y)(x2+y2xy)
(3x)3+y3=(3x+y)((3x)2+y23xy)
=(3x+y)(3x2+y23xy)
=(3x+y)(3x23xy+y2)
Option A is correct.

Was this answer helpful?
0
Similar Questions
Q1

Question 29

The value of (โˆ’27x2y)รท(โˆ’9xy) is
a) 3xy
b) โˆ’3xy
c) โˆ’3x
d) 3x

View Solution
Q2
Factors of 27x3+y3+z3โˆ’9xyz are:

View Solution
Q3
Let A=3y2+9xโˆ’3x2,B=6x2โˆ’2y2+3x,C=9x2โˆ’3xyโˆ’y2. Find A + B - C.
View Solution
Q4
Let A=3y2+9xโˆ’3x2,B=6x2โˆ’2y2+3x,C=9x2โˆ’3xyโˆ’y2. Find A + B - C.
View Solution
Q5

The factors of x3 โˆ’ 1 + y3 + 3xy are

(a) (x โˆ’ 1 + y) (x2 + 1 + y2 + x + y โˆ’ xy)

(b) (x + y + 1) (x2 + y2 + 1 โˆ’xy โˆ’ x โˆ’ y)

(c) (x โˆ’ 1 + y) (x2 โˆ’ 1 โˆ’ y2 + x + y + xy)

(d) 3(x + y โˆ’1) (x2 + y2 โˆ’ 1)

View Solution
Solve
Guides