0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

A particle of mass 200 g executes linear simple harmonic motion with an amplitude 10 cm. When the particles at a point midway between the mean and the extreme position, its kinetic energy is 3π2×103J. Assuming the initial phase to be 2π3, the equation of motion of the particle will be :
  1. y=10 sin (2πt+2π3)cm
  2. y=10 sin (4πt+2π3)cm
  3. y=10 cos (2πt+π6)cm
  4. y=10 cos (2πt+π3)cm

A
y=10 sin (2πt+2π3)cm
B
y=10 cos (2πt+π6)cm
C
y=10 cos (2πt+π3)cm
D
y=10 sin (4πt+2π3)cm
Solution
Verified by Toppr

Was this answer helpful?
0
Similar Questions
Q1
A particle of mass 200 g executes linear simple harmonic motion with an amplitude 10 cm. When the particles at a point midway between the mean and the extreme position, its kinetic energy is 3π2×103J. Assuming the initial phase to be 2π3, the equation of motion of the particle will be :
View Solution
Q2
A particle of mass 100g is executing SHM with amplitude of 10 cm. When the particle passes through the mean position at t=0 its kinetic energy is 8 mJ. What is the equation of simple harmonic motion if initial phase is zero?
View Solution
Q3
A particle of mass 400 g is executing SHM of amplitude 0.4 m. When it passes through the mean position, its kinetic energy is 32×103 J. If the initial phase of oscillation is π4, then the equation of motion of the particle is
View Solution
Q4

A particle executes linear simple harmonic motion with an amplitude of 2 cm. When the particle is at 1 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is:


View Solution
Q5
A point particle of mass 0.1 kg is executing SHM with amplitude of 0.1 m. When the particle passes through the mean position, its kinetic energy is 8×103J. If the initial phase of oscillation is 45, the equation of motion of this particle is
View Solution