A particle traversed along a straight line for first half time with velocity V0. For the remaining part, half of the distance is traversed with velocity V1 and other half distance with velocity V2. Find the mean velocity of the particle for the total journey.
A
V1+V2+2V02V0(V1+V2)
B
2(V1+V2)V0(V1+V2)+2V1V2
C
2V1+V2
D
2(V1+V2)V0+2V1V2
Hard
Open in App
Solution
Verified by Toppr
Correct option is B)
Lets total time =t s1=V0x(2t)(AtoB) t2=(23−S)/V1 t2=(2S−V0(t/2))/V1 t+2=2V1S−V1V0×4t (2t−t2)=V2(2S−S1) 2t−(2V13−4V1V0t)=2V2S−S1 2t−2V1S+4V1V0t=2V23−V0t/2 2t−2V13+4V1V0t=2V2S−4V2V0t t(21+4V1V0+4V2V0)=S(2V21+2V11) Varg=tS=4V1V22V1V2+V0(V1+V2)/2V1V214+V2 tS=2V1V2(V1+V2)2V1V22V1V2+V0(V1+V2) Vavg=2(V1+V2)V0(V1+V2)+2V1V2