0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

# A planet of radius R=110×(radiusofEarth) has the same mass density as Earth. Scientists dig a well of depth R5 on it and lower a wire of the same length and of linear mass density 10−3kgm−1 into it. If the wire is not touching anywhere, the force applied at the top of the wire by a person holding it in place is (take the radius of Earth =6×106m and the acceleration due to gravity of Earth is 10−2)96N108N120N150N

A
96N
B
108N
C
150N
D
120N
Solution
Verified by Toppr

#### ginner=gsurfacerR =43GπrρForce to keep the wire at rest (F)= weight of wire∫R4R5λ×ginnerdrPutting the values and solving we get,F=108N

0
Similar Questions
Q1
A planet of radius R=110×(radiusofEarth) has the same mass density as Earth. Scientists dig a well of depth R5 on it and lower a wire of the same length and of linear mass density 103kgm1 into it. If the wire is not touching anywhere, the force applied at the top of the wire by a person holding it in place is (take the radius of Earth =6×106m and the acceleration due to gravity of Earth is 102)
View Solution
Q2

A planet has twice the density of earth but the acceleration due to gravity on its surface is exactly the same as on the surface of earth. Its radius in terms of radius of earth R will be:

View Solution
Q3
Acceleration due to gravity at surface of a planet is equal to that at surface of the earth and density is 1.5 times that of earth. if radius of earth is R, radius of planet is
View Solution
Q4

The value of g (acceleration due to gravity) at earth's surface is 10 ms​​​​​-2 its value in ms​​​​​-2 at centre of earth which is assumed to be a sphere of radius R metre and uniform mass density is

View Solution
Q5
A planet's density is 3 times that of the Earth. But the acceleration due to gravity on its surface is exactly the same as on the Earth's surface. The radius of the planet in terms of the Earth's radius R is
View Solution