A straight rod of length l extends from x=a to x=l+a. If the mass per unit length is (a+bx2), the gravitational force it exerts on a point mass m placed at x=0 is given by
A
Gml(b+a(l+a)a)
B
l(l+a)Gm{a(l+a)+bl3}
C
Gm(bl+l+aa)
D
Gm{b(l+a)+la)
Hard
Open in App
Solution
Verified by Toppr
Correct option is A)
The gravitational force is F=∫al+ax2Gmλdx here, λ=(a+bx2) now, F=∫al+ax2Gm(a+bx2)dx=Gm∫al+a(b+x2a)dx or,F=Gm[b(l+a−a)−a(l+a1−a1)]=Gml[b+a(l+a)a]