The electrical conductivity of matter is dependent upon the atomic structure of the material from which the conductor is made. In any solid material, such as copper, the atoms which make up the molecular structure are bound firmly together. At room temperature, copper will contain a considerable amount of heat energy. Since heat energy is one method of removing electrons from their orbits, copper will contain many free electrons that can move from atom to atom. When not under the influence of an external force, these electrons move in a zigzag manner within the conductor. This movement is equal in all directions so that electrons are not lost or gained by any part of the conductor. When controlled by an external force, the electrons move generally in the same direction. The effect of this movement is felt almost instantly from one end of the conductor to the other. This electron movement is called an ELECTRIC CURRENT. Some metals are better conductors of electricity than others. Silver, copper, gold, and aluminum are materials with many free electrons and make good conductors. Silver is the best conductor, followed by copper, gold, and aluminum. Copper is used more often than silver because of cost. Aluminum is used where weight is a major consideration, such as in high-tension power lines, with long spans between supports. Gold is used where oxidation or corrosion is a consideration and a good conductivity is required. Hence, copper is a good conductor of electricity.