0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

Exercise:
[ A spring with a spring constant of 1200 N m1 is mounted on a horizontal table as shown in the Figure. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. ]

In Exercise, let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.
In what way do these function for SHM differ from each other in frequency, in amplitude or the initial phase?
420425_474d72f000b041a385ab50e684d9edc6.png

Solution
Verified by Toppr

Distance travelled by the mass sideways, a=2.0cm
Angular frequency of oscillation:

ω=km

=12003=400=20rads1


(a) As time is noted from the mean position, hence using

x=asinωt we hav x=2sin20t


(b) At maximum stretched position, the body is at the extreme right position, with an intial phase of π/2 rad. Then,

x=asin(ωt+π2)=acosωt=2cos20t


(c) At maximum compressed position, the body is at left position, with an intial phase of 3π/2rad. Then,

x=asin(ωt+3π2)=acost=2cos20t

The functions neither differ in amplitude nor in frequency. They differ in intial phase.

Was this answer helpful?
0
Similar Questions
Q1
Exercise:
[ A spring with a spring constant of 1200 N m1 is mounted on a horizontal table as shown in the Figure. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. ]

In Exercise, let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is
(a) at the mean position,
(b) at the maximum stretched position, and
(c) at the maximum compressed position.
In what way do these function for SHM differ from each other in frequency, in amplitude or the initial phase?
420425_474d72f000b041a385ab50e684d9edc6.png
View Solution
Q2

In Exercise 14.9, let us take the position of mass when the spring is unstreched as x = 0, and the direction from left to right as the positive direction of x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?

View Solution
Q3
In Exercise 14.9, let us take the position of mass when the spring is unstreched as x = 0, and the direction from left to right as the positive direction of x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is (a) at the mean position, (b) at the maximum stretched position, and (c) at the maximum compressed position. In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?
View Solution
Q4
A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. 14.24. A mass of 3 kgis attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.
View Solution
Q5
A spring having with a spring constant 1200 N m1 is mounted on a horizontal table as shown in the Figure. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.

420414_a3a7e1b5952348db84c73e07b675b0eb.png
View Solution