0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

Find the current in the sliding rod $$AB (resistance = R)$$ for the arrangement shown in Fig. $$\vec {R}$$ is constant and is out of the paper. Parallel wires have no resistance. $$\vec {v}$$ is constant. Switch $$S$$ is closed at time $$t = 0$$.

Solution
Verified by Toppr

Conductor $$AB$$ moves towards right with speed

$$v$$ and magnetic

$$\vec {B}$$
perpendicularly upward so angle between

$$B$$ and $$v$$ is

$$90^{\circ}$$ and an induced e.m.f.,? flows in loop $$AXYB$$.
$$\epsilon = \dfrac {d}{dt}\vec {B} \vec {A} $$

$$= \dfrac {d}{dt} BA\cos 0 = \dfrac {d}{dt} B(d\times vtimes t) = Bvd$$
$$\because$$ angle between $$\vec {B}$$ and $$\vec {A}$$ is

$$0^{\circ}$$.
$$\therefore \epsilon = B.v.d$$
at $$t = 0$$,
current starts increasing in loop along with inductor $$L$$ due to potential difference
By Kirchhoff's law in loop $$ABYX$$,
$$-L \dfrac {dI(t)}{dt} + Bvd = IR$$
$$\dfrac {LdI(t)}{dt} + RI(t) = Bvd$$
It is a differential equation.
$$I(t) = \dfrac {Bvd}{R} + Ae^{-\dfrac {Rt}{2}} .... (I)$$
at $$t = 0, I = 0$$
$$\therefore 0 = \dfrac {Bvd}{R} + Ae^{0} [\because e^{0} = 1]$$
$$A = \dfrac {-Bvd}{R}$$
$$\therefore I(t) = \dfrac {Bvd}{R} - \dfrac {Bvd}{R} e^{-\dfrac {Rt}{2}}$$ [from I]
$$I = \dfrac {Bvd}{R} \left [1 - e^{-\dfrac {Rt}{2}}\right ]$$
This is the required current expression.

Was this answer helpful?
0
Similar Questions
Q1
Find the current in the sliding rod $$AB (resistance = R)$$ for the arrangement shown in Fig. $$\vec {R}$$ is constant and is out of the paper. Parallel wires have no resistance. $$\vec {v}$$ is constant. Switch $$S$$ is closed at time $$t = 0$$.

View Solution
Q2
Find the current in the sliding rod AB (resistance =R) for the arrangement shown in figure. B is constant and is out of the paper. Parallel wires have no resistance. v is constant. Switch S is closed at time t=0.


View Solution
Q3
A sliding rod AB of resistance R is shown in the figure. Here magnetic field B is constant and is Out of the paper. Parallel wires have no resistance and the rod is moving with Constant velocity v. The current in the sliding rod AB in the function of t, when switch S is closed at time t = 0 is
942497_9c0413e3e8bc45be814b8b7575bc1d11.png
View Solution
Q4
In the circuit arrangement shown in figure, the switch S is closed at t=0. Find the current in the inductance as a function of time? Does the current through 10Ω resistor vary with time or remains constant.
216142.PNG
View Solution
Q5
In the circuit shown aside, the switch S is closed for long time and at t = 0 s, S is opened. The current at t s (> 0) through the resistance R is:
44737.jpg
View Solution