0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

Find the equation of the equipotentials for an infinite cylinder of radius $$r_{0}$$ carrying charge of linear density $$\lambda$$

Solution
Verified by Toppr

Consider a Gaussian cylindrical dotted surface, $$S$$ at a distance $$r$$ from the centre of the cylinder of radius $$r_{0}$$ of infinite length.

The electric field lines are radial and perpendicular to the surface.


Let electric field intensity on Gaussian surface at $$\mathrm{P}$$ is $$\mathrm{E}$$, and total charge $$\mathrm{q}$$ on cylinder will be $$q=\lambda l$$


So, by Gauss's law,


$$\oint
\limits _{S} E_{r} d s=\dfrac{\lambda l}{\varepsilon_{0}} \Rightarrow[E _r \cos
\theta]_{0}^{2\pi i}=\dfrac{\lambda l}{\varepsilon_{0}}$$


$$\mathrm{E}_r
2 \mathrm{2\pi rl} \cos 90^{\circ}=\dfrac{\lambda
l}{\varepsilon_{0}}\left[\angle \theta \text{ } \mathrm{is} \text { between }
\mathrm{E}_{\mathrm{r}} \text { and curved surface of dotted cylinder is }
90^{\circ} \mathrm{J}\right.$$


$$E_{r}=\dfrac{\lambda}{2
\pi r \varepsilon_{0}}$$


We know that electric field $$\mathrm{E}_{\mathrm{r}}$$ at distance $$\mathrm{r}$$ from
centre of cylinder $$E_r=\dfrac{-d V}{d r}$$


So potential difference d at distance $$\mathrm{r}_{0}$$ and $$\mathrm{r}$$ from the centre of cylinder,


$$\mathrm{d}
\mathrm{V}=-\mathrm{E}_{\mathrm{r}} \cdot \mathrm{d} \mathrm{r}\left[\because
E=\dfrac{-d V}{d r}\right]$$


$$V(r)-V\left(r_{0}\right)=-\int
E_{r} \cdot d r$$


$$=\int
\limits _{r_{0}}^{r} \dfrac{\lambda}{2 \pi \varepsilon_{0} r} d r=\dfrac{-\lambda}{2
\pi \varepsilon_{0}} \int \limits _{r_{0}}^{r} \dfrac{d r}{r}=\dfrac{-\lambda}{2
\pi \varepsilon_{0}}\left[\log _{e} r\right]_{0}^{r}$$


$$=\dfrac{-\lambda}{2
\pi \varepsilon_{0}}\left[\log _{e} r-\log _{e} r_{0}\right]=\dfrac{-\lambda}{2
\pi \varepsilon_{0}}\left[\log _{e} r\right]_{0}^{r}$$


$$\log _{e}
\dfrac{r}{r_{0}}=\dfrac{-2 \pi
\varepsilon_{0}}{\lambda}\left[V(r)-V\left(r_{0}\right)\right]$$


$$\dfrac{r}{r_{0}}=e^{\dfrac{-2
\pi \varepsilon _0}{\lambda} [V(r)-V\left(r_{0}\right) ]}$$


$$r=r_{0}
e^{\dfrac{-2 \pi \varepsilon_{0}}{\lambda}\left[V(r)-v\left(r_{0}\right)\right]}$$


So
equipotential surfaces are the coaxial curved surfaces of cylinders with given
cylinder of radius r related as above.


Was this answer helpful?
2
Similar Questions
Q1
Find the equation of the equipotentials for an infinite cylinder of radius $$r_{0}$$ carrying charge of linear density $$\lambda$$
View Solution
Q2
Find the equation of the equipotential for an infinite cylinder of radius r0, carrying charge of linear density λ.
View Solution
Q3
An infinite cylinder of radius r0 carrying linear charge density λ. The equation of the equipotential surface for this cylinder is
View Solution
Q4
The electric potential due to an infinite uniformly charge of linear charge density λ at a distance r from it is given by
r0 is the reference point
View Solution
Q5
Let E1(r),E2(r) and E3(r) be the respective electric fields at a distance r from a point charge Q, an infinitely long wire with constant linear charge density λ, an infinite plane with uniform surface charge density σ.
If E1(r0)=E2(r0)=E3(r0) at a given distance r0, then
View Solution