0
You visited us 0 times! Enjoying our articles? Unlock Full Access!
Question

Find the second order derivatives of the following :
$$x^{x}$$

Solution
Verified by Toppr

$$y = x^{x}$$
$$\therefore \log y = \log x^{x} = x \log x$$
Differentiating both sides w.r.t. x, we get
$$\frac{1} {y} \cdot \frac{dy} {dx} = \frac{d} {dx} \left(x \log x\right)$$
$$\frac{1} {y} \cdot \frac{dy} {dx} = x \cdot \frac{d} {dx} \left( \log x\right) + \left( \log x\right) \frac{d} {dx} \left( x \right)$$
$$= \frac{x} {x} + \left( \log x\right) \left( 1\right)$$
$$= 1 + \log x$$
$$\therefore \frac{dy} {dx} = y \left(1 + \log x\right) = x^{x} \left(1 + \log x\right)$$
$$ \therefore \frac{d} {dx} \left(x^{x}\right) = x^{x} \left(1 + \log x\right)$$ ...........(1)
$$\therefore \frac{d^{2}y} {dx^{2}} = \frac{d} {dx} \left[x^{2} \left(1 + \log x\right) \right]$$
$$= x^{x} \cdot \frac{d} {dx} \left(1 + \log x\right) + \left(1 + \log x\right) \cdot \frac{d} {dx} \left(x^{x}\right)$$
$$ = x^{x} \left(0 + \frac{1} {x}\right) + \left(1 + \log x\right) \cdot x^{x} \left(1 + \log x\right)$$ .....[By (1)]
$$= x^{x-1} + x^{x} \left(1 + \log x\right)$$

Was this answer helpful?
5
Similar Questions
Q1

Find the second order derivatives of the function.

View Solution
Q2

Find the second order derivatives of the function.

View Solution
Q3

Find the second order derivatives of the function.

View Solution