Solve

Guides

0

Question

Open in App

Solution

Verified by Toppr

$$ \vec { F_ { CB} } = \dfrac{Gm^2}{2R^2} \hat{i} $$

$$ \vec {F_{CD}} = \dfrac{GM^2}{4R^2} cos 45 \hat{j} + \dfrac{GM^2}{4R^2} sin 45\hat{j} $$

So resultant force on C,

$$ \therefore \vec { F_ c } =\quad \vec { F_ { CA} } \quad +\quad \vec { F_ { CB} } +\quad \vec {F_{CD}} $$

$$ \therefore \vec { F_ c } =\quad \vec { F_ { CA} } \quad +\quad \vec { F_ { CB} } +\quad \vec {F_{CD}} $$

$$ = - \dfrac{GM^2}{4R^2} \left( 2+\dfrac { 1 }{ \sqrt { 2 } } \right) \hat { i } +\dfrac { GM^2 }{ 4R^2 } \left( 2+\dfrac { 1 }{ \sqrt { 2 } } \right) \ $$

$$ \therefore F_c \dfrac{GM^2}{4R^2}(2\sqrt{2}+1) $$

For moving along the circle , $$ \vec { F } = \dfrac{mv^2}{R} $$

or $$ \dfrac{GM^2}{4R^2}(2\sqrt{2} +1) = \dfrac{MV^2}{R} or V = \sqrt { \dfrac { GM }{ R } \left( \dfrac { 2\sqrt { 2 } +1 }{ 4 } \right) } $$

Was this answer helpful?

0