Solve
Study
Textbooks
Join / Login
Question
How many even numbers greater than 300 can be formed with the digits 1, 2, 3, 4, 5 if repetition of digits in a number is not allowed ?
Medium
Open in App
Solution
Verified by Toppr
Was this answer helpful?
0
0
Similar questions
The result of dividing a number of two digits by the number with the digits reversed is
$65 $
. If the difference of digits is 1, find the number.
Medium
View solution
>
If an integer of two digits is
$k$
times the sum of its digits, the number formed by interchanging the digits is the sum of the digits multiplied by
Medium
View solution
>
Find how many four-digit numbers greater than the 7000 can be formed from the digits 1,2,3,5,7,8 and 9 if,
1. The repetition of digits is not allowed in the same number.
2. Repetitions of digits allowed.
Then answer (1) + answer (2) is,
Medium
View solution
>
A mobile number consists of ten digits. The first four digits of the number are
$9,9,8$
and
$7$
. The last three digits are
$3,5$
and
$5$
. The remaining digits are distinct and make the mobile number, the greatest possible number. What are these digits?
Medium
View solution
>
How many numbers between 30000 and 40000 can be formed with the digits 2,3,5,6,9 if each digit can be repeated any number of times?
Medium
View solution
>
View more