If A and B are two events, the probability that exactly one of them occurs is given by
P(A)+P(B)−2P(A∩B)
P(A∩B)+2P(¯A∩B)
P(A∪B)−P(A∩B)
P(¯A)+P(¯B)−2P(¯A∩¯B)
A
P(A)+P(B)−2P(A∩B)
B
P(A∩B)+2P(¯A∩B)
C
P(A∪B)−P(A∩B)
D
P(¯A)+P(¯B)−2P(¯A∩¯B)
Open in App
Solution
Verified by Toppr
Exactly one of the events of E A and B is represented by A∩¯¯¯¯B+¯¯¯¯A∩B hence P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)={P(A)−P(A∩B)}+{P(B)−P(A∩B)}=P(A)+P(B)−2P(A∩B)
which is option (A). ⇒P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=[P(A)+P(B)−P(A∩B)]−P(A∩B)=P(A∪B)−P(A∩B)
which is option (C). P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=1−P(¯¯¯¯A)+1−P(¯¯¯¯B)−2{1−P(¯¯¯¯A∪¯¯¯¯B)}=2P(¯¯¯¯A∪¯¯¯¯B)−P(¯¯¯¯A)−P(¯¯¯¯B)={2P(¯¯¯¯A)+2P(¯¯¯¯B)−2P(¯¯¯¯A∩¯¯¯¯B)}−P(¯¯¯¯A)−P(¯¯¯¯B)=P(¯¯¯¯A)+P(¯¯¯¯B)−2P(¯¯¯¯A∩¯¯¯¯B)
which is option (D). and P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)=1−P(¯¯¯¯A∪B)+P(¯¯¯¯A∩B)∵¯¯¯¯¯¯¯¯¯¯¯¯¯A∩¯¯¯¯B=¯¯¯¯A∪B
by demorgan's law P(A∩¯¯¯¯B)=1−P(¯¯¯¯A∪B)⇒P(A∩¯¯¯¯B)+P(¯¯¯¯A∩B)={1−P(¯¯¯¯A)−P(B)+P(¯¯¯¯A∩B)}+P(¯¯¯¯A∩B)=P(A)−P(B)+2P(¯¯¯¯A∩B)
Was this answer helpful?
8
Similar Questions
Q1
If A and B are two events, the probability that at least one of them occurs is
(a) P(A) + P(B) – 2 P(A ∩ B)
(b) P(A) + P(B) – P(A ∩ B)
(c) P(A) + P(B) + P(A ∩ B)
(d) P(A) + P(B) + 2P(A ∩ B)
View Solution
Q2
Consider the following statements: (1) P(¯A∪B)=P(¯A)+P(B)−P(¯A∩B) (2) P(A∩¯B)=P(¯B)−P(A∩B) (3) P(A∩B)=P(B)P(A|B) Which of the above statements are correct?
View Solution
Q3
If A and B are two events such that P(A∪B)=0.65 and P(A∩B)=0.15, then P(¯A)+P(¯B)=
View Solution
Q4
Let A,B & C be 3 arbitary events defined on a sample space S and if, P(A)+P(B)+P(C)=p1,P(A∩B)+P(B∩C)+P(C∩A)=p2 & P(A∩B∩C)=p3, then the probability that exactly one of the three events occurs is given by: