Solve
Study
Textbooks
Guides
Use app
Login
Question
If
f
(
x
)
=
x
n
, then the value of
f
(
1
)
−
1
!
f
′
(
1
)
+
2
!
f
′
′
(
1
)
−
3
!
f
′
′
′
(
1
)
+
.
.
.
+
n
!
(
−
1
)
n
f
n
(
1
)
is
A
2
n
B
2
n
−
1
C
0
D
1
Medium
Open in App
Solution
Verified by Toppr
Correct option is C)
f
(
x
)
=
x
n
⇒
f
(
1
)
=
1
f
′
(
x
)
=
n
x
n
−
1
⇒
f
′
(
1
)
=
n
f
′
′
(
x
)
=
n
(
n
−
1
)
x
n
−
2
⇒
f
′
′
(
1
)
=
n
(
n
−
1
)
... ... ... ...
... ... ... ...
f
n
(
x
)
=
n
(
n
−
1
)
(
n
−
2
)
.
.
.
2
.
1
f
n
(
1
)
=
n
(
n
−
1
)
(
n
−
2
)
.
.
.
2
.
1
f
(
1
)
−
1
!
f
′
(
1
)
+
2
!
f
′
′
(
1
)
−
3
!
f
′
′
′
(
1
)
+
.
.
.
+
n
!
(
−
1
)
n
f
n
(
1
)
=
1
−
1
!
n
+
2
!
n
(
n
−
1
)
−
3
!
n
(
n
−
1
)
(
n
−
2
)
+
.
.
.
+
n
!
(
−
1
)
n
n
(
n
−
1
)
(
n
−
2
)
.
.
.
2
.
1
=
(
1
−
1
)
n
........... [Using binomial expansion as
(
1
−
x
)
n
=
n
C
0
1
n
(
−
x
)
0
+
n
C
1
1
n
−
1
(
−
x
)
1
+
.
.
.
.
.
+
n
C
n
(
−
x
)
n
]
=
0
Video Explanation
Was this answer helpful?
0
0
Similar questions
If
s
=
3
t
3
−
2
1
t
2
−
6
t
+
5
, find the value of
d
t
2
d
2
s
at t = 1.
Medium
View solution
>
If
d
y
3
d
3
x
(
d
x
d
y
)
5
=
P
(
d
x
2
d
2
y
)
−
d
x
d
y
d
x
3
d
3
y
then value of
′
P
′
is equal to
Hard
View solution
>
If
y
=
a
+
b
+
a
+
b
+
a
+
b
+
.
.
.
.
.
.
…
∞
x
x
x
x
x
x
then
Hard
View solution
>
If
f
(
x
)
=
x
n
, then find the value of
f
(
1
)
+
1
!
f
1
(
1
)
+
2
!
f
2
(
1
)
+
.
.
.
.
.
.
+
n
!
f
n
(
1
)
, where
f
r
(
x
)
denotes the
r
t
h
derivative of
f
(
x
)
w
.
r
.
t
.
x
Easy
View solution
>
If
f
(
x
)
=
1
0
0
x
1
0
0
+
9
9
x
9
9
+
9
8
x
9
8
+...+x+1
,
s
h
o
w
t
h
a
t
f'(1)=100 f'(0)$$.
Hard
View solution
>