Solve
Study
Textbooks
Guides
Join / Login
Question
Let
f
(
x
)
=
x
cos
β
1
(
β
sin
β£
x
β£
)
,
x
β
[
β
2
Ο
β
,
2
Ο
β
]
, then which of the following is true?Β
A
f
β²
(
0
)
=
β
2
Ο
β
B
f
is not differentiable at
x
=
0
C
f
β²
is decreasing in
(
β
2
Ο
β
,
0
)
and increasing in
(
0
,
2
Ο
β
)
D
f
β²
is increasing in
(
β
2
Ο
β
,
0
)
and decreasing in
(
0
,
2
Ο
β
)
Medium
Open in App
Solution
Verified by Toppr
Correct option is C)
f
(
x
)
=
x
cos
β
1
(
β
sin
(
β£
x
β£
)
)
=
x
(
Ο
β
cos
β
1
(
sin
β£
x
β£
)
)
=
x
(
Ο
β
2
Ο
β
+
sin
β
1
(
sin
β£
x
β£
)
)
=
x
(
2
Ο
β
+
β£
x
β£
)
β΄
f
(
x
)
=
β©
βͺ
βͺ
βͺ
βͺ
β¨
βͺ
βͺ
βͺ
βͺ
β§
β
x
(
2
Ο
β
+
x
)
x
(
2
Ο
β
β
x
)
β
2
Ο
β
>
x
β₯
o
2
Ο
β
<
x
<
0
β
β΄
f
β²
(
x
)
=
β©
βͺ
βͺ
βͺ
βͺ
β¨
βͺ
βͺ
βͺ
βͺ
β§
β
2
Ο
β
+
2
x
2
Ο
β
β
2
x
β
2
Ο
β
>
x
β₯
0
β
2
Ο
β
β€
x
<
0
β
f
β²
(
x
)
is increasing in
(
0
,
2
Ο
β
)
and decreasing in
(
β
2
Ο
β
,
0
)
.
Was this answer helpful?
0
0
Similar questions
If(x) =
c
o
t
Β
2
x
t
a
n
(
4
Ο
β
β
x
)
β
,
(
x
ξ
=
Ο
/
4
)
is continuous atΒ
x
=
Ο
/
4
then the value of fΒ
(
4
Ο
β
)
isΒ
Easy
View solution
>
L
e
t
f
(
x
)
=
n
β
β
lim
β
(
Ο
3
β
tan
β
1
2
x
)
2
n
+
5
1
β
.
Β Then the set of valuesof
x
Β for which
f
(
x
)
=
0
Β is
Medium
View solution
>
Let
f
(
x
)
=
(
sin
(
tan
β
1
x
)
+
sin
(
cot
β
1
x
)
)
2
β
1
,Β
β£
x
β£
>
1
.Β
If
d
x
d
y
β
=
2
1
β
d
x
d
β
(
sin
β
1
(
f
(
x
)
)
)
and
y
(
3
β
)
=
6
Ο
β
, then
y
(
β
3
β
)
is equal to :Β Β
Hard
View solution
>
Let
f
(
x
)
=
h
β
0
I
t
β
h
sin
(
x
+
h
)
i
n
(
x
+
h
)
β
(
sin
x
)
i
n
Β
z
β
then
f
(
2
Ο
β
)
is
Hard
View solution
>
Let
f
(
x
)
=
sin
x
,
g
(
x
)
=
[
x
+
1
]
and
g
(
f
(
x
)
)
=
h
(
x
)
, where
[
.
]
is the greatest integer function. The
h
β²
(
2
Ο
β
)
is
Easy
View solution
>
View more