Question

Show that any positive odd integer is of the form , or , or , where is some integer.

Hard
Solution
verified
Verified by Toppr

Using Euclid division algorithm, we know that ----(1)

Let be any positive integer and .

Then, by Euclid’s algorithm, for some integer , and , .

Therefore,

is divisible by , so it is an even number.

is divisible by , but is not divisible by so it is an odd number.

is divisible by , and is divisible by so it is an even number.

is divisible by , but is not divisible by so it is an odd number.

is divisible by , and is divisible by so it is an even number.

is divisible by , but is not divisible by so it is an odd number.

And therefore, any odd integer can be expressed in the form

Video Explanation
image
play-icon
Solve any question of Real Numbers with:-
Was this answer helpful?
upvote 0
downvote0