Solve

Guides

0

Question

Open in App

Solution

Verified by Toppr

Let a be any positive integer and b=6.

Then, by Euclid’s algorithm, a=6q+r for some integer q≥0, and r=0,1,2,3,4,5 ,or 0≤r<6.

Therefore, a=6qor6q+1or6q+2or6q+3or6q+4or6q+5

6q+0:6 is divisible by 2, so it is an even number.

6q+1:6 is divisible by 2, but 1 is not divisible by 2 so it is an odd number.

6q+2:6 is divisible by 2, and 2 is divisible by 2 so it is an even number.

6q+3:6 is divisible by 2, but 3 is not divisible by 2 so it is an odd number.

6q+4:6 is divisible by 2, and 4 is divisible by 2 so it is an even number.

6q+5:6 is divisible by 2, but 5 is not divisible by 2 so it is an odd number.

And therefore, any odd integer can be expressed in the form 6q+1or6q+3or6q+5

Was this answer helpful?

28