Solve
Study
Textbooks
Guides
Join / Login
Question
Show that the following four points in each of the following are concyclic and find the circle on which they lie
(
1
,
1
)
,
(
−
6
,
0
)
,
(
−
2
,
2
)
,
(
−
2
,
−
8
)
(
1
,
2
)
,
(
3
,
−
4
)
,
(
5
,
−
6
)
,
(
1
9
,
8
)
(
1
,
−
6
)
,
(
5
,
2
)
,
(
7
,
0
)
,
(
−
1
,
−
4
)
(
9
,
1
)
,
(
7
,
9
)
,
(
−
1
,
1
2
)
,
(
6
,
1
0
)
Medium
Open in App
Solution
Verified by Toppr
Fore concyclic
B
D
×
A
C
=
A
D
.
B
C
+
A
B
.
D
C
(1)
A
(
1
,
1
)
,
B
(
−
6
,
0
)
,
C
(
−
2
,
2
)
,
D
(
−
2
,
−
8
)
⇒
(
−
6
+
2
)
2
+
(
8
)
2
.
3
2
+
1
2
=
3
2
+
9
2
.
4
2
+
2
2
+
7
2
+
1
.
1
0
2
+
1
0
2
⇒
1
6
+
6
4
.
1
0
=
1
8
0
0
+
1
0
5
0
⇒
2
0
2
=
2
0
2
Hence they are concyclic
(2)
(
1
,
−
2
)
,
(
3
,
4
)
(
5
,
−
6
)
,
(
1
9
,
8
)
⇒
1
6
2
+
1
2
2
.
4
2
+
8
2
=
1
8
2
+
6
2
.
2
2
+
6
2
+
2
2
+
6
2
1
4
2
+
1
4
2
⇒
4
0
0
.
8
0
=
3
6
0
.
8
+
4
0
3
9
2
⇒
8
0
5
=
8
0
5
Hence there are concyclic.
(3)
(
1
,
−
6
)
,
(
5
,
2
)
,
(
7
,
0
)
,
(
−
1
,
−
4
)
⇒
6
2
+
6
2
.
6
2
+
6
2
=
2
2
+
2
2
.
2
2
+
2
2
+
4
2
+
8
2
.
8
2
+
4
2
⇒
3
6
+
3
6
.
3
6
+
3
6
=
8
.
8
+
1
6
+
6
4
+
1
6
+
6
4
⇒
7
2
.
7
2
=
8
0
+
8
7
2
=
8
8
Hence they are not concyclic
(4)
(
9
,
1
)
,
(
7
,
9
)
,
(
−
1
,
1
2
)
,
(
6
,
1
0
)
⇒
(
1
)
2
+
(
1
)
2
.
1
0
2
+
1
1
2
=
3
2
+
9
2
.
8
2
+
3
2
+
2
2
+
8
2
7
2
+
2
0
2
⇒
2
.
2
2
1
=
9
0
7
3
+
6
8
5
3
⇒
4
4
2
=
6
5
7
0
+
3
6
0
4
⇒
4
4
2
=
6
6
2
9
Hence they are no concyclic
Was this answer helpful?
0
0
Similar questions
Assertion
Points A(1, 0) , B(2, 3) , C(5, 3) and D(6, 0) are concyclic.
Reason
Points A, B, C, D forms isosceles trapezium or AB and CD meet in E, then
E
A
⋅
E
B
=
E
C
⋅
E
D
Medium
View solution
>
The points
(
1
,
−
2
)
,
(
−
2
,
−
1
)
,
(
4
,
7
)
and
(
6
,
3
)
are concyclic.
Medium
View solution
>
(
5
,
0
)
is a point that lies on
Medium
View solution
>
Let
A
(
0
,
−
6
)
,
B
(
1
,
2
)
,
C
(
3
,
−
3
)
,
D
(
−
3
,
2
)
,
and
E
(
−
4
,
−
2
)
be given points, then which of the following is (are) true?
Medium
View solution
>
According to the figure shown, which of the following is correct?
Medium
View solution
>
View more