Solve the differential equation (xβy2)dx+2xydy=0.
A
y2+xlnax=0
B
y2βylnax=0
C
y2βxlnax=0
D
y2+ylnax=0
Hard
Open in App
Solution
Verified by Toppr
Correct option is A)
(xβy2)dx+2xydy=0β2ydxdyββxy2β=β1 Substitute v=y2βdv=2ydy dxdvββxvβ=β1 Β ...(1) Here P=βx1βββ«Pdx=ββ«x1βdx=βlogx=logx1β β΄I.F.=elogx1β=x1β Multiplying (1) by I.F. we get x1βdxdvββx2vβ=βx1β Integrating both sides w.r.t x we get xvβ=ββ«x1βdx+a=βlogx+aβy2=xlogax