Question

Open in App

Verified by Toppr

Let the numerator be $x$ and denominator be $y$.

Let the fraction be $yxβ$

$x+y+3=2y$

(or) $xβy=β3$

(or) $x=yβ3$ _____ (1)

Also , $yβ1xβ1β=21β$

$xβ1=2yβ1β$

$x=2yβ1β+1β2x=yβ1+2=y+1$

(or) $2xβy=1$ _____ (2)

substituting (1) in (2),Β

$2(yβ3)βy=1$

$β2yβ6βy=1βy=7$

put $y=7$ in (1) we get $x=7β3=4$

$β΄x=4,y=7$

$β΄$ the fraction is $yxβ=74β$

0

0