Question

Open in App

Updated on : 2022-09-05

Solution

Verified by Toppr

Correct option is A)

The peak value of the triangular wave is $V_{0}$.

The equation of the line in the interval $0$ to $4T $ is given as,

$V=T4V_{0} t$

The rms value of the triangular wave is given as,

$V_{rms}=T4 ∫_{0}(V)_{2}dt $

$=T4 ×(T4V_{0} )_{2}∫_{0}(t)_{2}dt $

$=(T_{3}64V_{0}_{2} )(3t_{3} )_{0} $

$=3 V_{0} $

Thus the rms value of $V$ in the time interval $0$ to $4T $ is $3 V_{0} $.

Solve any question of Alternating Current with:-

Was this answer helpful?

0

0