In view of the coronavirus pandemic, we are making LIVE CLASSES and VIDEO CLASSES completely FREE to prevent interruption in studies
Biology > Plant Growth and Development > Plant Growth Regulators
Plant Growth and Development

Plant Growth Regulators

We all know that plants need light, water, oxygen and nutrition to grow and develop. All these qualify as extrinsic factors. While extrinsic factors are important, did you know that plant growth depends on intrinsic factors too? They can be intracellular genes or intercellular chemicals. These chemicals are called Plant Growth Regulators. Let’s learn about them in more detail below.

Suggested Videos

Play
Play
Play
Arrow
Arrow
ArrowArrow
Growth Rate
Phytochrome H
Germination of Seeds
Slider

Plant Growth Regulators

Plant Growth Regulators are defined as small, simple chemicals produced naturally by plants to regulate their growth and development.

Characteristics

Plant Growth Regulators can be of a diverse chemical composition such as gases (ethylene), terpenes (gibberellic acid) or carotenoid derivates (abscisic acid). They are also referred to as plant growth substances, phytohormones or plant hormones. Based on their action, they are broadly classified as follows:

  • Plant Growth Promoters – They promote cell division, cell enlargement, flowering, fruiting and seed formation. Examples are auxins, gibberellins and cytokinins.
  • Plant Growth Inhibitors – These chemicals inhibit growth and promote dormancy and abscission in plants. An example is an abscisic acid.

Note: Ethylene can be a promoter or an inhibitor, but is largely a Plant Growth Inhibitor.

Browse more about Plant Growth and Development

Plant Growth and Development

All plant growth regulators were discovered accidentally. Let’s take a detailed look at each regulator and learn about it more closely:

Auxins

Discovery

Auxins were the first growth hormone to be discovered. They were discovered due to the observations of Charles Darwin and his son, Francis Darwin. The Darwins observed that the coleoptile (protective sheath) in canary grass grows and bends towards the source of light. This phenomenon is ‘phototropism’. In addition, their experiments showed that the coleoptile tip was the site responsible for the bending. Finally, this led to the isolation of the first auxin by F. W. Went from the coleoptile tip of oat seedlings.

 (Source: Wikimedia Commons)

Types

First isolated from human urine, auxin is a term applied to natural and synthetic compounds that have growth regulating properties. Plants produce natural auxins such as Indole-3-acetic acid (IAA) and Indole butyric acid (IBA). Natural auxins are found in growing stems and roots from where they migrate to their site of action. Naphthalene acetic acid (NAA) and 2, 4-dichlorophenoxyacetic (2, 4-D) are examples of synthetic auxins.

Effects

  • Promote flowering in plants like pineapple.
  • Help to initiate rooting in stem cuttings.
  • Prevent dropping of fruits and leaves too early.
  • Promote natural detachment (abscission) of older leaves and fruits.
  • Control xylem differentiation and help in cell division.

Applications

  • Used for plant propagation.
  • To induce parthenocarpy i.e. the production of fruit without prior fertilization.
  • 2, 4-D is widely used as a herbicide to kill dicotyledonous weeds.
  • Used by gardeners to keep lawns weed-free.

Note: The growing apical bud in higher plants inhibits the growth of the lateral buds. This phenomenon is ‘Apical Dominance‘. Removal of the apical bud allows the lateral buds to grow. This technique is commonly used in tea plantations and hedge-making.

(Source: Wikimedia Commons)

Why do we get certain fruits in one particular season and not the others? Learn about Photoperiodism here to know the answer.

You can download Plant Growth and Development Cheat Sheet by clicking on the download button below


 Plant Growth Regulators

Gibberellins

Discovery

It is the component responsible for the ‘bakane’ disease of rice seedlings. The disease is caused by the fungal pathogen Gibberella fujikuroi. E. Kurosawa treated uninfected rice seedlings with sterile filtrates of the fungus and reported the appearance of disease symptoms. Finally, the active substance causing the disease was identified as gibberellic acid.

Types

There exist more than 100 gibberellins obtained from a variety of organisms from fungi to higher plants. They are all acidic and are denoted as follows – GA1, GA2, GA3 etc. GA3 (Gibberellic acid) is the most noteworthy since it was the first to be discovered and is the most studied.

Effects

  • Increase the axis length in plants such as grape stalks.
  • Delay senescence (i.e. ageing) in fruits. As a result, their market period is extended.
  • Help fruits like apples to elongate and improve their shape.

Applications

  • The brewing industry uses GA3 to speed the malting process.
  • Spraying gibberellins increase sugarcane yield by lengthening the stem.
  • Used to hasten the maturity period in young conifers and promote early seed production.
  • Help to promote bolting (i.e. sudden growth of a plant just before flowering) in cabbages and beet.

Cytokinins

Discovery

F. Skoog and his co-workers observed a mass of cells called ‘callus’ in tobacco plants. These cells proliferated only when the nutrient medium contained auxins along with yeast extract or extracts of vascular tissue. Skoog and Miller later identified the active substance responsible for proliferation and called it kinetin.

Types

Cytokinins were discovered as kinetin. Kinetin does not occur naturally but scientists later discovered several natural (example – zeatin) and synthetic cytokinins. Natural cytokinins exist in root apices and developing shoot buds – areas where rapid cell division takes place.

Effects

  • Help in the formation of new leaves and chloroplast.
  • Promote lateral shoot growth and adventitious shoot formation.
  • Help overcome apical dominance.
  • Promote nutrient mobilisation which in turn helps delay leaf senescence.

Abscisic Acid

Discovery

Three independent researchers reported the purification and characterization of three different inhibitors – Inhibitor B, Abscission II and Dormin. Later, it was found that all three inhibitors were chemically identical and were, therefore, together were given the name abscisic acid. Abscisic acid mostly acts as an antagonist to Gibberellic acid.

Effects

  • Regulate abscission and dormancy.
  • Inhibit plant growth, metabolism and seed germination.
  • Stimulates closure of stomata in the epidermis.
  • It increases the tolerance of plants to different kinds of stress and is, therefore, called ‘stress hormone’.
  • Important for seed development and maturation.
  • It induces dormancy in seeds and helps them withstand desiccation and other unfavourable growth factors.

Ethylene

Discovery

A group of cousins showed that a gaseous substance released from ripe oranges hastens the ripening of unripe oranges. Consequently, they found that the substance was ethylene – a simple gaseous Plant Growth Regulator. Ripening fruits and tissues undergoing senescence produce ethylene in large amounts.

Effects

  • Affects horizontal growth of seedlings and swelling of the axis in dicot seedlings.
  • Promotes abscission and senescence, especially of leaves and flowers.
  • Enhances respiration rate during ripening of fruits. This phenomenon is ‘respiratory climactic’.
  • Increases root growth and root hair formation, therefore helping plants to increase their absorption surface area.

Application

Ethylene regulates many physiological processes and is, therefore, widely used in agriculture. The most commonly used source of ethylene is Ethephon. Plants can easily absorb and transport an aqueous solution of ethephon and release ethylene slowly.

  • Used to break seed and bud dormancy and initiate germination in peanut seeds.
  • To promote sprouting of potato tubers.
  • Used to boost rapid petiole elongation in deep water rice plants.
  • To initiate flowering and synchronising fruit-set in pineapples.
  • To induce flowering in mango.
  • Ethephon hastens fruit ripening in apples and tomatoes and increases yield by promoting female flowering in cucumbers. It also accelerates abscission in cherry, walnut and cotton.

In summary, one or the other plant growth regulator influences every phase of growth or development in plants. These roles could be individualistic or synergistic; promoting or inhibiting. Additionally, more than one regulator can act on any given life event in a plant. Along with genes and extrinsic factors, plant growth regulators play critical roles in plant growth and development. Factors like temperature and light affect plant growth events (vernalisation) via plant growth regulators.

Read more about Vernalisation here in detail.

Solved Example for You

Question: Match the plant growth regulator and the scientist associated with it.

Plant Growth Regulator Scientist
1. Gibberellins a. Independent researchers
2. Auxins b. E. Kurosawa
3. Abscisic acid c. F. Skoog
4. Cytokinins d. F. W. Went

Solution: 1-b, 2-d, 3-a, 4-c.

Share with friends

Customize your course in 30 seconds

Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.
tutor
tutor
Ashhar Firdausi
IIT Roorkee
Biology
tutor
tutor
Dr. Nazma Shaik
VTU
Chemistry
tutor
tutor
Gaurav Tiwari
APJAKTU
Physics
Get Started

Leave a Reply

avatar
  Subscribe  
Notify of

Stuck with a

Question Mark?

Have a doubt at 3 am? Our experts are available 24x7. Connect with a tutor instantly and get your concepts cleared in less than 3 steps.
toppr Code

chance to win a

study tour
to ISRO

Download the App

Watch lectures, practise questions and take tests on the go.

Get Question Papers of Last 10 Years

Which class are you in?
No thanks.