Alternating Current

AC Voltage Applied to a Resistor

Resistance is the opposition to the flow of current. AC is a current that changes its polarity. Hence, as we shall see a Resistor does offer resistance to AC. Here we will quantify this resistance and try to connect its value to the value of the resistance in a DC circuit. Let us see!

Suggested Videos

Play
Play
Play
previous arrow
next arrow
previous arrownext arrow
Slider

 

Alternating Current

When a constant voltage source or battery is applied across a resistor current is developed in resister. This current has a unique direction and flows from the negative terminal of a battery to positive terminal. The magnitude of the current remains constant as well. If Direction of current through resistor changes periodically then current is called alternating current.

Resistor                    Square wave AC current

ResistorSinusoidal AC Current

Browse more Topics under Alternating Current

You can download Alternating Current Cheat Sheet by clicking on the download button below

Resistor

Resistor in an AC circuit

To have a sinusoidal varying alternating current we need to have an AC voltage source because current is directly proportional to voltage. An AC generator or AC dynamo can be used as an AC voltage source.

Resistor

 

Voltage V(t) is applied across resistance R. V(t) is sinusoidal voltage with peak Vm and time period T.

$$T\quad =\frac { 1 }{ f } =\frac { 2\pi }{ \omega } $$

Where f is frequency and ω is angular frequency. This kind of circuit is a purely resistive circuit. According to Kirchhoff’s law –

$$v(t)=Ri(t)\\ i(t)=\frac { v(t) }{ R } \\ i(t)=\frac { { V }_{ m }\sin { (ωt) } }{ R } \\ { i }_{ m }=\frac { { V }_{ m } }{ R } \\ i(t)={ i }_{ m }\sin { (ωt) }$$

Here voltage and current has same frequency and both are in same phase.

Average Value of the Current

The average value of current can be found out by summing over the total change in the voltage and dividing it by the number of times we do the measurements. This can be done as:

$${ i }_{ avg }\quad =\quad \frac { \int _{ 0 }^{ T }{ i(t)dt } }{ \int _{ 0 }^{ T }{ dt } } \\ { i }_{ avg }\quad =\frac { 1 }{ T } \int _{ 0 }^{ T }{ i(t)dt } \\ { i }_{ avg }\quad =\quad \frac { 1 }{ T } \int _{ 0 }^{ T/2 }{ { i }_{ m }\sin { \omega t } dt } \quad -\frac { 1 }{ T } \int _{ T/2 }^{ T }{ { i }_{ m }\sin { \omega t } dt } $$

$${ i }_{ avg }\quad =\frac { { i }_{ m } }{ T } { \left[ \frac { \cos { \omega t } }{ \omega } \right] }_{ 0 }^{ T/2 }-\frac { { i }_{ m } }{ T } { \left[ \frac { \cos { \omega t } }{ \omega } \right] }_{ T/2 }^{ T }\\ { i }_{ avg }\quad =\frac { { i }_{ m } }{ T\omega } \left[ \cos { \pi } -\cos { 0 } -\cos { \pi } +\cos { 2\pi } \right] $$

Hence,  $${ i }_{ avg }\quad =\quad 0$$

Average value of a AC current over a cycle is zero because in 1st haft of time period current is positive and in 2nd half current is negative.

Root Mean Square Value of Current

$${ { i }_{ rms } }^{ 2 }\quad =\quad \frac { \int _{ 0 }^{ T }{ { i }^{ 2 }(t)dt } }{ \int _{ 0 }^{ T }{ dt } } \\ { { i }_{ rms } }^{ 2 }\quad =\frac { 1 }{ T } \int _{ 0 }^{ T }{ { i }^{ 2 }(t)dt } \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { 1 }{ T } \int _{ 0 }^{ T }{ { i }_{ m }^{ 2 }{ \sin { \omega t } }^{ 2 }dt } \quad \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { { i }_{ m }^{ 2 } }{ 2T } \int _{ 0 }^{ T }{ (1-\cos { 2\omega t } )dt } $$

$${ { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } { \left[ t-\frac { \sin { 2\omega t } }{ 2\omega } \right] }_{ 0 }^{ T }\\ { { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } \left[ T-0-\frac { \sin { 2\omega T\quad – } \sin { 0 } }{ 2\omega } \right] \\ { { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } \left[ T-\frac { \sin { 4\pi } }{ 2\omega } \right] \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { { i }_{ m }^{ 2 } }{ 2 } $$

Hence $${ { i }_{ rms } }\quad =\quad \frac { { i }_{ m } }{ \sqrt { 2 } } \\ $$

Solved Example for You

Q. A circuit has an ac voltage source of 100V and 50Hz frequency is and 1KΩ resister. Find peak and rms value of current. How much time current will take to reach its first negative peak?

Solution: Peak voltage  $${ V }_{ m\quad }=\quad 100volt$$

Peak current  $${ i }_{ m }=\frac { { V }_{ m } }{ R }$$

$${ i }_{ m }=\frac { 100 }{ 1000 } A\\ { i }_{ m }=0.1A$$

RMS value $${ { i }_{ rms } }\quad =\quad \frac { { i }_{ m } }{ \sqrt { 2 } } \\ { { i }_{ rms } }\quad =\quad \frac { 0.1 }{ \sqrt { 2 } } \quad =0.070A=70mA$$

Time taken to reach first negative peak:

$$t\quad =\quad \frac { 3T }{ 2 } =\quad \frac { 3 }{ 2\times 50 } =.03sec$$

Share with friends

Customize your course in 30 seconds

Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.
tutor
tutor
Ashhar Firdausi
IIT Roorkee
Biology
tutor
tutor
Dr. Nazma Shaik
VTU
Chemistry
tutor
tutor
Gaurav Tiwari
APJAKTU
Physics
Get Started

2
Leave a Reply

avatar
2 Comment threads
0 Thread replies
0 Followers
 
Most reacted comment
Hottest comment thread
2 Comment authors
sridhar DasariTanishk Recent comment authors
  Subscribe  
newest oldest most voted
Notify of
Tanishk
Guest
Tanishk

Awesome

BINODI
Guest

true

sridhar Dasari
Editor
sridhar Dasari

Awesome post…

Customize your course in 30 seconds

Which class are you in?
No thanks.