Resistance is the opposition to the flow of current. AC is a current that changes its polarity. Hence, as we shall see a Resistor does offer resistance to AC. Here we will quantify this resistance and try to connect its value to the value of the resistance in a DC circuit. Let us see!

### Suggested Videos

## Alternating Current

When a constant voltage source or battery is applied across a resistor current is developed in resister. This current has a unique direction and flows from the negative terminal of a battery to positive terminal. The magnitude of the current remains constant as well. If Direction of current through resistor changes periodically then current is called alternating current.

Â Â Â Â Â Â Â Â Â Â Square wave AC current

Sinusoidal AC Current

**Browse more Topics under Alternating Current**

- Representation of AC Current and Voltage by Rotating Vectors â€“ Phasors
- The AC Voltage Applied to a Capacitor
- AC Voltage Applied to an Inductor
- AC Voltage Applied to a Series LCR Circuit
- Power in AC Circuit: The Power Factor
- LC Oscillations
- Transformers

**You can download Alternating Current Cheat Sheet by clicking on the download button below**

## Resistor in an AC circuit

To have a sinusoidal varying alternating current we need to have an AC voltage source because current is directly proportional to voltage. An AC generator or AC dynamo can be used as an AC voltage source.

Voltage V(t) is applied across resistance R. V(t) is sinusoidal voltage with peak V_{m} and time period T.

$$T\quad =\frac { 1 }{ f } =\frac { 2\pi }{ \omega } $$

Where f is frequency and Ï‰ is angular frequency. This kind of circuit is a purely resistive circuit. According to Kirchhoffâ€™s law â€“

$$v(t)=Ri(t)\\ i(t)=\frac { v(t) }{ R } \\ i(t)=\frac { { V }_{ m }\sin { (Ï‰t) } }{ R } \\ { i }_{ m }=\frac { { V }_{ m } }{ R } \\ i(t)={ i }_{ m }\sin { (Ï‰t) }$$

Here voltage and current has same frequency and both are in same phase.

### Average Value of the Current

The average value of current can be found out by summing over the total change in the voltage and dividing it by the number of times we do the measurements. This can be done as:

$${ i }_{ avg }\quad =\quad \frac { \int _{ 0 }^{ T }{ i(t)dt } }{ \int _{ 0 }^{ T }{ dt } } \\ { i }_{ avg }\quad =\frac { 1 }{ T } \int _{ 0 }^{ T }{ i(t)dt } \\ { i }_{ avg }\quad =\quad \frac { 1 }{ T } \int _{ 0 }^{ T/2 }{ { i }_{ m }\sin { \omega t } dt } \quad -\frac { 1 }{ T } \int _{ T/2 }^{ T }{ { i }_{ m }\sin { \omega t } dt } $$

$${ i }_{ avg }\quad =\frac { { i }_{ m } }{ T } { \left[ \frac { \cos { \omega t } }{ \omega } \right] }_{ 0 }^{ T/2 }-\frac { { i }_{ m } }{ T } { \left[ \frac { \cos { \omega t } }{ \omega } \right] }_{ T/2 }^{ T }\\ { i }_{ avg }\quad =\frac { { i }_{ m } }{ T\omega } \left[ \cos { \pi } -\cos { 0 } -\cos { \pi } +\cos { 2\pi } \right] $$

Hence,Â $${ i }_{ avg }\quad =\quad 0$$

Average value of a AC current over a cycle is zero because in 1st haft of time period current is positive and in 2nd half current is negative.

### Root Mean Square Value of Current

$${ { i }_{ rms } }^{ 2 }\quad =\quad \frac { \int _{ 0 }^{ T }{ { i }^{ 2 }(t)dt } }{ \int _{ 0 }^{ T }{ dt } } \\ { { i }_{ rms } }^{ 2 }\quad =\frac { 1 }{ T } \int _{ 0 }^{ T }{ { i }^{ 2 }(t)dt } \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { 1 }{ T } \int _{ 0 }^{ T }{ { i }_{ m }^{ 2 }{ \sin { \omega t } }^{ 2 }dt } \quad \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { { i }_{ m }^{ 2 } }{ 2T } \int _{ 0 }^{ T }{ (1-\cos { 2\omega t } )dt } $$

$${ { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } { \left[ t-\frac { \sin { 2\omega t } }{ 2\omega } \right] }_{ 0 }^{ T }\\ { { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } \left[ T-0-\frac { \sin { 2\omega T\quad – } \sin { 0 } }{ 2\omega } \right] \\ { { i }_{ rms } }^{ 2 }\quad =\frac { { i }_{ m }^{ 2 } }{ 2T } \left[ T-\frac { \sin { 4\pi } }{ 2\omega } \right] \\ { { i }_{ rms } }^{ 2 }\quad =\quad \frac { { i }_{ m }^{ 2 } }{ 2 } $$

Hence $${ { i }_{ rms } }\quad =\quad \frac { { i }_{ m } }{ \sqrt { 2 } } \\ $$

## Solved Example for You

Q. A circuit has an ac voltage source of 100V and 50Hz frequency is and 1Kâ„¦ resister. Find peak and rms value of current. How much time current will take to reach its first negative peak?

Solution: Peak voltageÂ $${ V }_{ m\quad }=\quad 100volt$$

Peak currentÂ Â $${ i }_{ m }=\frac { { V }_{ m } }{ R }$$

$${ i }_{ m }=\frac { 100 }{ 1000 } A\\ { i }_{ m }=0.1A$$

RMS value $${ { i }_{ rms } }\quad =\quad \frac { { i }_{ m } }{ \sqrt { 2 } } \\ { { i }_{ rms } }\quad =\quad \frac { 0.1 }{ \sqrt { 2 } } \quad =0.070A=70mA$$

Time taken to reach first negative peak:

$$t\quad =\quad \frac { 3T }{ 2 } =\quad \frac { 3 }{ 2\times 50 } =.03sec$$

Awesome

Awesome post…