 # Inverse Trigonometric Functions Formulas

The inverse trigonometric functions are called as arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with domains. Here, we will study the Inverse Trigonometric Functions Formulas for the sine, cosine, tangent, cotangent, secant, and the cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios.

## Inverse Trigonometric Function Formulas

### What is Inverse Trigonometric Function?

The inverse trigonometric functions are also known as the anti trigonometric functions or arcus functions. The inverse trigonometric functions of sine, cosine, tangent, cosecant, secant, and cotangent are used to find the angle of a triangle from any of the trigonometric functions. It is widely used in many fields like geometry, engineering, physics, etc.

But in most of the time, the convention symbol to represent the inverse trigonometric function using arc-prefix like $$\arcsin(x)$$, $$\arccos(x)$$, $$\arctan(x)$$ etc. The inverse trigonometric functions are written as $$\sin^{-1}x,$$ $$\cos^{-1} x$$, $$\cot^{-1} x$$, $$\tan^{-1} x$$, $$\csc^{-1} x$$, $$\sec^{-1} x$$. Now let us get the formulas related to these functions. Consider, the function y = f(x), and x = g(y) then the inverse function is written as g = f-1. Source: en.wikipedia.org

### Important Inverse Trigonometric Functions Formulas

• $$\sin^{-1} (-x) = – \sin^{-1} (x), x ∈ [-1, 1]$$
• $$\cos^{-1} (-x) = \pi – \cos^{-1} (x), x ∈ [-1, 1]$$
• $$\tan^{-1} (-x) = – \tan^{-1} (x), x ∈ R$$
• $$\csc^{-1} (-x) = -\csc^{-1} (x), |x| ≥ 1$$
• $$\sec^{-1} (-x) = \pi -\sec^{-1} (x), |x| ≥ 1$$
• $$\cot^{-1} (-x) = \pi – \cot^{-1} (x), x ∈ R$$
• $$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} , x ∈ [-1, 1]$$
• $$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x ∈ R$$
• $$\sec^{-1}x + \csc^{-1} x = \frac{\pi}{2},|x| ≥ 1$$
• $$\sin^{-1} (1/x) = \csc^{-1} (x), if x ≥ 1 or x ≤ -1$$
• $$\cos^{-1} (1/x) = \sec^{-1} (x), if x ≥ 1 or x ≤ -1$$
• $$\tan^{-1} (1/x) = \cot^{-1} (x), x > 0$$
• $$\tan^{-1} x + \tan^{-1} y = \tan^{-1} (\frac{(x+y)}{(1-xy)})$$
• $$\tan^{-1} x – \tan^{-1} y = \tan^{-1}(\frac{ (x-y)}{(1+xy)})$$
• $$\sin(\sin^{-1} (x)) = x, -1≤ x ≤1$$
• $$\cos(\cos^{-1} (x)) = x, -1≤ x ≤1$$
• $$\tan(\tan^{-1} (x)) = x, – ∞ < x < ∞$$
• $$\csc(\csc^{-1} (x)) = x, – ∞ < x ≤ 1 or -1 ≤ x < ∞$$
• $$\sec(\sec^{-1} (x)) = x,- ∞ < x ≤ 1 or 1 ≤ x < ∞$$
• $$\cot(\cot^{-1} (x)) = x, – ∞ < x < ∞$$
• $$\sin^{-1} (\sin θ) = θ, -\frac{\pi}{2}≤ θ ≤ \frac{\pi}{2}$$
• $$\cos^{-1} (\cos θ) = θ, 0 ≤ θ ≤ \pi$$
• $$\tan^{-1}(\tan θ) = θ, -\frac{\pi}{2}< θ < \frac{\pi}{2}$$
• $$\csc^{-1} (\csc θ) = θ, – \frac{\pi}{2} ≤ θ < 0 or 0 < θ ≤ \frac{\pi}{2}$$
• $$\sec^{-1} (\sec θ) = θ, 0 ≤ θ ≤ \frac{\pi}{2}or \frac{\pi}{2}< θ ≤ \pi$$
• $$\cot^{-1} (\cot θ) = θ, 0 < θ < \pi$$

## Solved Examples for Inverse Trigonometric Functions Formulas

Q1. Find the values of $$\tan^{-1} \sin (-\frac{\pi}{2})$$

Solution:

$$\tan^{-1} \sin (-\frac{\pi}{2})$$

$$= \tan^{-1} (- \sin \frac{\pi}{2})$$

$$= \tan^{-1} (- 1), [Since – \sin \frac{\pi}{2}= -1]$$

$$= \tan^{-1} (- \tan \pi/4), [Since tan \frac{\pi}{4}= 1]$$

$$= \tan^{-1} \tan (-\frac{\pi}{4})$$

$$= – \frac{\pi}{4}.$$

Therefore, $$\tan^{-1} \sin (-\frac{\pi}{2}) = – \frac{\pi}{4}$$

Q2. Find the values of $$\sin (\cos^{-1}\frac{3}{5})$$

Solution:

Let, $$\cos^{-1}\frac{3}{5} = \Theta$$

$$\cos \Theta = \frac{3}{5}$$

$$\sin \Theta = \sqrt {(1 – cos2 \Theta)}$$

$$= \sqrt { (1 – \frac{9}{25}) }$$

$$= \sqrt {\frac{16}{25} }$$

$$= \frac{4}{5}$$

Therefore, $$\sin (\cos^{-1}\frac{3}{5})$$

$$= \sin \Theta = \frac{4}{5}.$$

Q3. Find the values of $$\cos (\tan^{-1}\frac{3}{4})$$

Solution:

Let, $$\tan^{-1}\frac{3}{4}= \Theta$$

$$\tan \Theta = \frac{3}{4}$$

We know that $$sec2 \Theta – tan2 \Theta = 1$$

$$\sec \Theta = \sqrt {(1 + tan2 \Theta)}$$

$$\sec \Theta = \sqrt {(1 + (\frac{3}{4})2)}$$

$$\sec \Theta = \sqrt {(1 + \frac{9}{16})}$$

$$\sec \Theta = \sqrt { (\frac{25}{16})}$$

$$\sec \Theta = \frac{5}{4}$$

$$\ cos \Theta = \frac{4}{5}$$

$$\Theta = \cos^{-1}\frac{4}{5}$$

Now, $$\cos (\tan^{-1}\frac{3}{4}) = \cos (\cos^{-1}\frac{4}{5}) = \frac{4}{5}$$

Therefore, $$\cos (\tan^{-1}\frac{3}{4}) = \frac{4}{5}$$

Share with friends

## Customize your course in 30 seconds

##### Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.  Ashhar Firdausi
IIT Roorkee
Biology  Dr. Nazma Shaik
VTU
Chemistry  Gaurav Tiwari
APJAKTU
Physics
Get Started

## Browse

##### Maths Formulas 4 Followers

Most reacted comment
1 Comment authors Recent comment authors
Subscribe
Notify of Guest
KUCKOO B

I get a different answer for first example.
I got Q1 as 20.5
median 23 and
Q3 26 Guest
Yashitha

Hi
Same Guest
virat

yes

## Question Mark?

Have a doubt at 3 am? Our experts are available 24x7. Connect with a tutor instantly and get your concepts cleared in less than 3 steps.