Vector Algebra

Scalar (or Dot) Product of Two Vectors

We have already studied about the addition and subtraction of vectors. Vectors can be multiplied in two ways, scalar or dot product where the result is a scalar and vector or cross product where is the result is a vector. In this article, we will look at the scalar or dot product of two vectors.

Suggested Videos

Play
Play
Play
previous arrow
next arrow
previous arrownext arrow
Slider

 

Definition

The scalar or dot product of two non-zero vectors \( \vec{a} \) and \( \vec{b} \), denoted by \( \vec{a} \).\( \vec{b} \) is

\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)| \( \cos \theta \)

where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \) and 0 ≤ \( \theta \) ≤ \( \pi \) as shown in the figure below.

dot product

It is important to note that if either \( \vec{a} \) = \( \vec{0} \) or \( \vec{b} \) = \( \vec{0} \), then \( \theta \) is not defined, and in this case

\( \vec{a} \).\( \vec{b} \) = 0

Browse more Topics under Vector Algebra

 You can download Vector Algebra Cheat Sheet by clicking on the download button below
Scalar (or Dot) Product of Two Vectors

Important Observations

  • \( \vec{a} \).\( \vec{b} \) is a real number
  • If \( \vec{a} \) and \( \vec{b} \) are two non-zero vectors, then \( \vec{a} \).\( \vec{b} \) = 0 if and only if \( \vec{a} \) and \( \vec{b} \) are perpendicular to each other.

\( \vec{a} \).\( \vec{b} \) = 0 \( \Longleftrightarrow \) \( \vec{a} \) ⊥ \( \vec{b} \)

  • If \( \theta \) = 0, then \( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)|. In particular,

\( \vec{a} \).\( \vec{a} \) = \( \vec{|a|}^2 \), as in this case \( \theta \) is 0.

  • If \( \theta \) = \( \pi \), then \( \vec{a} \).\( \vec{b} \) = – |\( \vec{a} \)| |\( \vec{b} \)|. In particular,

\( \vec{a} \).\( \vec{(- a)} \) = – \( \vec{|a|}^2 \), as in this case \( \theta \) is \( \pi \).

  • Following from observations 2 and 3, for mutually perpendicular vectors \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \), we have

\( \hat{i} \).\( \hat{i} \) = \( \hat{j} \).\( \hat{j} \) = \( \hat{k} \).\( \hat{k} \) = 1

And, \( \hat{i} \).\( \hat{j} \) = \( \hat{j} \).\( \hat{k} \) = \( \hat{k} \).\( \hat{i} \) = 0

  • The angle between two non-zero vectors is given by,

\( \cos \theta \) = \( \frac{\vec{a}.\vec{b}}{|\vec{a}| |\vec{b}|} \)

Or, \( \theta \) =  cos-1 [\( \frac{\vec{a}.\vec{b}}{|\vec{a}| |\vec{b}|} \)]

  • The scalar product is commutative, i.e.

\( \vec{a} \).\( \vec{b} \) = \( \vec{b} \).\( \vec{a} \)

Two Important Properties of Dot Product

Property 1: Distributivity of a scalar or dot product over addition

If \( \vec{a} \), \( \vec{b} \) and \( \vec{c} \) are any three vectors, then

\( \vec{a} \).(\( \vec{b} \) + \( \vec{c} \)) = \( \vec{a} \).\( \vec{b} \) + \( \vec{a} \).\( \vec{c} \)

Property 2:

If \( \vec{a} \) and \( \vec{b} \) are any two vectors and \( \lambda \) is a scalar, then

(\( \lambda \)\( \vec{a} \)).\( \vec{b} \) = \( \lambda \)(\( \vec{a} \).\( \vec{b} \)) = \( \vec{a} \).(\( \lambda \)\( \vec{b} \))

If two vectors \( \vec{a} \) and \( \vec{b} \) are given in the component form as a1\( \vec{i} \) + a2\( \vec{j} \) + a3\( \vec{k} \) and b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \), then their scalar or dot product is as follows:

\( \vec{a} \).\( \vec{b} \) = (a1\( \vec{i} \) + a2\( \vec{j} \) + a3\( \vec{k} \)).(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \))

Or, \( \vec{a} \).\( \vec{b} \) = a1\( \vec{i} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \)) + a2\( \vec{j} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \)) + a3\( \vec{k} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \))

On solving further, and using the properties 1 and 2 above, we get

\( \vec{a} \).\( \vec{b} \) = a1b1(\( \vec{i} \).\( \vec{i} \)) + a1b2(\( \vec{i} \).\( \vec{j} \)) + a1b3(\( \vec{i} \).\( \vec{k} \)) + a2b1(\( \vec{j} \).\( \vec{i} \)) + a2b2(\( \vec{j} \).\( \vec{j} \)) + a2b3(\( \vec{j} \).\( \vec{k} \)) + a3b1(\( \vec{k} \).\( \vec{i} \)) + a3b2(\( \vec{k} \).\( \vec{j} \)) + a3b3(\( \vec{k} \).\( \vec{k} \))

Using Observation 5 mentioned above, we get

\( \vec{a} \).\( \vec{b} \) = a1b1 + a2b2 + a3b3

Solved Problems for You

Question: Find the angle between two vectors \( \vec{a} \) and \( \vec{b} \) with magnitudes \( \sqrt{3} \) and 2 ,
respectively having \( \vec{a} \).\( \vec{b} \) = \( \sqrt{6} \).

Solution: By definition of the scalar or dot product of vectors, we know that

\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)| \( \cos \theta \)

where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). In this question, we have,

|\( \vec{a} \)| = \( \sqrt{3} \), |\( \vec{b} \)| = 2, and \( \vec{a} \).\( \vec{b} \) = \( \sqrt{6} \)

Replacing these values in the formula, we get

\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)| \( \cos \theta \)
\( \Longleftrightarrow \) \( \sqrt{6} \) = \( \sqrt{3} \) x 2 x \( \cos \theta \)
\( \Longleftrightarrow \) \( \sqrt{3} \) x \( \sqrt{2} \) = \( \sqrt{3} \) x \( \sqrt{2} \) x \( \sqrt{2} \) x \( \cos \theta \)

Cancelling the common terms on both sides, we get

1 = \( \sqrt{2} \) x \( \cos \theta \)
Or, \( \cos \theta \) = \( \frac{1}{ \sqrt{2}} \)
Therefore, \( \theta \) = \( \frac{\pi}{4} \)
Hence, the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \).

Share with friends

Customize your course in 30 seconds

Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.
tutor
tutor
Ashhar Firdausi
IIT Roorkee
Biology
tutor
tutor
Dr. Nazma Shaik
VTU
Chemistry
tutor
tutor
Gaurav Tiwari
APJAKTU
Physics
Get Started

Leave a Reply

Your email address will not be published. Required fields are marked *

Download the App

Watch lectures, practise questions and take tests on the go.

Customize your course in 30 seconds

No thanks.