We have already studied about the addition and subtraction of vectors. Vectors can be multiplied in two ways, scalar or dot product where the result is a scalar and vector or cross product where is the result is a vector. In this article, we will look at the scalar or dot product of two vectors.
Suggested Videos
Definition
The scalar or dot product of two non-zero vectors \( \vec{a} \) and \( \vec{b} \), denoted by \( \vec{a} \).\( \vec{b} \) is
\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)|Â \( \cos \theta \)
where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \) and 0 ≤ \( \theta \) ≤ \( \pi \) as shown in the figure below.
It is important to note that if either \( \vec{a} \) = \( \vec{0} \) or \( \vec{b} \) = \( \vec{0} \), then \( \theta \) is not defined, and in this case
\( \vec{a} \).\( \vec{b} \) = 0
Browse more Topics under Vector Algebra
- Basic Concepts of Vectors
- Components of a Vector
- Types of Vectors
- Addition of Vectors
- Vector (or Cross) Product of Two Vectors
- Section Formula
- Projection of a Vector on a Line
Important Observations
- \( \vec{a} \).\( \vec{b} \) is a real number
- If \( \vec{a} \) and \( \vec{b} \) are two non-zero vectors, then \( \vec{a} \).\( \vec{b} \) = 0 if and only if \( \vec{a} \) and \( \vec{b} \) are perpendicular to each other.
\( \vec{a} \).\( \vec{b} \) = 0 \( \Longleftrightarrow \) \( \vec{a} \) ⊥ \( \vec{b} \)
- If \( \theta \) = 0, then \( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)|. In particular,
\( \vec{a} \).\( \vec{a} \) = \( \vec{|a|}^2 \), as in this case \( \theta \) is 0.
- If \( \theta \) = \( \pi \), then \( \vec{a} \).\( \vec{b} \) = – |\( \vec{a} \)| |\( \vec{b} \)|. In particular,
\( \vec{a} \).\( \vec{(- a)} \) = – \( \vec{|a|}^2 \), as in this case \( \theta \) is \( \pi \).
- Following from observations 2 and 3, for mutually perpendicular vectors \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \), we have
\( \hat{i} \).\( \hat{i} \) =Â \( \hat{j} \).\( \hat{j} \) =Â \( \hat{k} \).\( \hat{k} \) = 1
And, \( \hat{i} \).\( \hat{j} \) =Â \( \hat{j} \).\( \hat{k} \) =Â \( \hat{k} \).\( \hat{i} \) = 0
- The angle between two non-zero vectors is given by,
\( \cos \theta \) =Â \( \frac{\vec{a}.\vec{b}}{|\vec{a}| |\vec{b}|} \)
Or, \( \theta \) =Â cos-1Â [\( \frac{\vec{a}.\vec{b}}{|\vec{a}| |\vec{b}|} \)]
- The scalar product is commutative, i.e.
\( \vec{a} \).\( \vec{b} \) =Â \( \vec{b} \).\( \vec{a} \)
Two Important Properties of Dot Product
Property 1: Distributivity of a scalar or dot product over addition
If \( \vec{a} \), \( \vec{b} \) and \( \vec{c} \) are any three vectors, then
\( \vec{a} \).(\( \vec{b} \) +Â \( \vec{c} \)) =Â \( \vec{a} \).\( \vec{b} \) +Â \( \vec{a} \).\( \vec{c} \)
Property 2:
If \( \vec{a} \) and \( \vec{b} \) are any two vectors and \( \lambda \) is a scalar, then
(\( \lambda \)\( \vec{a} \)).\( \vec{b} \) =Â \( \lambda \)(\( \vec{a} \).\( \vec{b} \)) =Â \( \vec{a} \).(\( \lambda \)\( \vec{b} \))
If two vectors \( \vec{a} \) and \( \vec{b} \) are given in the component form as a1\( \vec{i} \) + a2\( \vec{j} \) + a3\( \vec{k} \) and b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \), then their scalar or dot product is as follows:
\( \vec{a} \).\( \vec{b} \) = (a1\( \vec{i} \) + a2\( \vec{j} \) + a3\( \vec{k} \)).(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \))
Or, \( \vec{a} \).\( \vec{b} \) =Â a1\( \vec{i} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \)) +Â a2\( \vec{j} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \)) +Â a3\( \vec{k} \)(b1\( \vec{i} \) + b2\( \vec{j} \) + b3\( \vec{k} \))
On solving further, and using the properties 1 and 2 above, we get
\( \vec{a} \).\( \vec{b} \) =Â a1b1(\( \vec{i} \).\( \vec{i} \)) + a1b2(\( \vec{i} \).\( \vec{j} \))Â + a1b3(\( \vec{i} \).\( \vec{k} \))Â + a2b1(\( \vec{j} \).\( \vec{i} \))Â + a2b2(\( \vec{j} \).\( \vec{j} \))Â + a2b3(\( \vec{j} \).\( \vec{k} \))Â + a3b1(\( \vec{k} \).\( \vec{i} \))Â + a3b2(\( \vec{k} \).\( \vec{j} \))Â + a3b3(\( \vec{k} \).\( \vec{k} \))
Using Observation 5 mentioned above, we get
\( \vec{a} \).\( \vec{b} \) =Â a1b1 +Â a2b2 +Â a3b3
Solved Problems for You
Question: Find the angle between two vectors \( \vec{a} \) and \( \vec{b} \) with magnitudes \( \sqrt{3} \) and 2 ,
respectively having \( \vec{a} \).\( \vec{b} \) = \( \sqrt{6} \).
Solution: By definition of the scalar or dot product of vectors, we know that
\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)|Â \( \cos \theta \)
where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \). In this question, we have,
|\( \vec{a} \)| = \( \sqrt{3} \), |\( \vec{b} \)| = 2, and \( \vec{a} \).\( \vec{b} \) = \( \sqrt{6} \)
Replacing these values in the formula, we get
\( \vec{a} \).\( \vec{b} \) = |\( \vec{a} \)| |\( \vec{b} \)|Â \( \cos \theta \)
\( \Longleftrightarrow \) \( \sqrt{6} \) = \( \sqrt{3} \) x 2 x \( \cos \theta \)
\( \Longleftrightarrow \) \( \sqrt{3} \) x \( \sqrt{2} \) = \( \sqrt{3} \) x \( \sqrt{2} \) x \( \sqrt{2} \) x \( \cos \theta \)
Cancelling the common terms on both sides, we get
1 = \( \sqrt{2} \) x \( \cos \theta \)
Or, \( \cos \theta \) =Â \( \frac{1}{ \sqrt{2}} \)
Therefore, \( \theta \) =Â \( \frac{\pi}{4} \)
Hence, the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \).
Leave a Reply