 # Reduction Formula

A reduction formula is regarded as an important method of integration. Integration by reduction formula always helps to solve complex integration problems. It can be used for powers of elementary functions, trigonometric functions, products of two are more complex functions, etc. These are the functions that cannot be integrated easily. Therefore for easing the process of integration, we will discuss here Reduction Formula for integration with examples. Let us learn the important concept!

## Reduction Formula

### Concept of Reduction Formula in Integration:

The reduction formula can be applied to different functions with combinations of different types of functions in a single problem. The formula for the reduction can be divided into various categories as given below:

• Exponential functions
• Trigonometric functions
• Inverse trigonometric functions
• Hyperbolic trigonometric functions
• Algebraic functions

Therefore to get the solution of integrals we can use the reduction formulas. These formulas will enable us to reduce the degree of the integrand and calculate the integrals in a finite number of steps. Below are the important reduction formulas for integrals involving the most common functions. ### Some Important Formulas

Reduction Formula for Trigonometric Functions

• $$\int sin^{n}(x)dx=\frac{-Sin^{n-1}(x)Cos(x)}{n}+\frac{n-1}{n}Sin^{n-2}(x)dx$$
• $$\int tan^{n}(x)dx=\frac{-tan^{n-1}(x)}{n-1}-\int tan^{n-2}(x)dx$$
• $$\int sin^{n}(x)\: cos^{m}(x)dx=\frac{sin^{n+1}(x)cos^{m-1}(x)}{n+m}+\frac{m-1}{n+m}\: \int sin^{n}(x)\: cos^{m-2}(x)dx$$
• $$\int x^{n}cos(x)dx=x^{n}sin(x)-n\int x^{n-1}sin(x)dx$$
• $$\int x^{n}sin(x)dx=-x^{n}cos(x)+n\int x^{n-1}cos(x)dx$$

Reduction Formula for Logarithmic Functions

• $${\large\int\normalsize} {{\ln^n}x\,dx} ={\large\frac{{{x^{n + 1}}{\ln^m}x}}{{n + 1}}\normalsize}-\;{\large\frac{m}{{n + 1}}\int\normalsize} {{x^n}{\ln^{m – 1}}x\,dx}$$
• $$\int \frac{ln^m x}{x^n}\,=\,\frac{ln^m x}{\left ( n-1 \right )x^{n+1}}\,+\, \frac{m}{n-1}\int \frac{ln^{m-1}x}{x^n}\,dx,\;n\neq1$$

Reduction Formula for Algebraic Functions

• $${\large\int\normalsize} {\large{\frac{{{x^n}}}{{a{x^n} + b}}\normalsize}} \,dx = {\large\frac{x}{a}\normalsize} – {\large\frac{b}{a}\int {\frac{{dx}}{{a{x^n} + b}}}\normalsize}$$
• $$\int \frac{dx}{\left ( ax^2 +bx+c \right )^n}\,=\, \frac{-2ax-b}{\left ( n-1 \right )\left ( b^2 -4ac \right )\left ( ax^2 +bx+c \right )^{n-1}}\,-\, \frac{2\left ( 2n-3 \right )a}{\left ( n-1 \right )\left ( b^2 – 4ac \right )}\int \frac{dx}{\left ( ax^2 +bx + c \right )^{n-1}},\,n\neq1$$
• $$\int \frac{dx}{\left ( x^2+a^2 \right )^n}\,=\, \frac{x}{2\left ( n-1 \right )a^2 \left ( x^2 + a^2 \right )^{n-1}}\,+\, \frac{2n-3}{2\left ( n-1 \right )a^2}\int \frac{dx}{\left ( x^2 + a^2 \right )^{n-1}},\,n\neq1$$
• $$\int \frac{dx}{\left ( x^2-a^2 \right )^n}\,=\, \frac{x}{2\left ( n-1 \right )a^2 \left ( x^2 – a^2 \right )^{n-1}}\,-\, \frac{2n-3}{2\left ( n-1 \right )a^2}\int \frac{dx}{\left ( x^2 – a^2 \right )^{n-1}},\,n\neq1$$

Reduction Formula for Exponential Functions

• $${\large\int\normalsize} {{x^n}{e^{mx}}dx} ={\large\frac{1}{m}\normalsize}{x^n}{e^{mx}}-\; {\large\frac{n}{m}\normalsize} {\large\int\normalsize} {{x^{n – 1}}{e^{mx}}dx}$$
• $${\large\int\normalsize} {{\large\frac{{{e^{mx}}}}{{{x^n}}}\normalsize} dx} =– {\large\frac{{{e^{mx}}}}{{\left( {n – 1} \right){x^{n – 1}}}}\normalsize}+\; {\large\frac{m}{{n – 1}}\normalsize} {\large\int\normalsize} {{\large\frac{{{e^{mx}}}}{{{x^{n – 1}}}}\normalsize} dx}$$
• $${\large\int\normalsize} {{{\sinh }^n}x\,dx} =– {\large\frac{1}{n}\normalsize}{\sinh ^{n – 1}}x\cosh x-\; {\large\frac{{n – 1}}{n}\normalsize} {\large\int\normalsize} {{{\sinh }^{n – 2}}x\,dx}$$
• $${\large\int\normalsize} {\large\frac{{dx}}{{{{\sinh }^n}x}}\normalsize} = – {\large\frac{1}{n}\normalsize}{\sinh ^{n – 1}}x\cosh x +\;{\large\frac{{n – 2}}{{n – 1}}\int\normalsize} {\large\frac{{dx}}{{{{\sinh }^{n – 2}}x}}\normalsize}$$

## Solved Examples

Q.1:  Evaluate the integral:

$$\displaystyle \int{{{z^7}{{\left( {8 + 3{z^4}} \right)}^8}\,dz}}$$

Solution: First,

$$u = 8 + 3{z^4}\hspace{0.25in} \to \hspace{0.25in}du = 12{z^3}dz\hspace{0.25in}\,\,\,\,\,\, \to \hspace{0.25in}\,\,\,\,\,{z^3}dz = \frac{1}{{12}}du$$

Let’s do a quick rewrite of the integrand,

$$\int{{{z^7}{{\left( {8 + 3{z^4}} \right)}^8}\,dz}} = \int{{{z^4}{z^3}{{\left( {8 + 3{z^4}} \right)}^8}\,dz}} = \int{{{z^4}{{\left( {8 + 3{z^4}} \right)}^8}\,{z^3}dz}}$$

Now, notice that we can convert all of the z’s in the integrand except apparently for the z^4 that is in the front. We can notice from the substitution that we can solve it for z^4 to get,

$${z^4} = \frac{1}{3}\left( {u – 8} \right)$$

Now, with this we can do the substitution and evaluate the integral.

\begin{align*}\int{{{z^7}{{\left( {8 + 3{z^4}} \right)}^8}\,dz}} & = \frac{1}{{12}}\int{{\frac{1}{3}\left( {u – 8} \right){u^8}du}} = \frac{1}{{36}}\int{{{u^9} – 8{u^8}du}} = \frac{1}{{36}}\left( {\frac{1}{{10}}{u^{10}} – \frac{8}{9}{u^9}} \right) + c\\ & = \require{bbox} \bbox[2pt,border:1px solid black]{{\frac{1}{{36}}\left( {\frac{1}{{10}}{{\left( {8 + 3{z^4}} \right)}^{10}} – \frac{8}{9}{{\left( {8 + 3{z^4}} \right)}^9}} \right) + c}}\end{align*}

Share with friends

## Customize your course in 30 seconds

##### Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.  Ashhar Firdausi
IIT Roorkee
Biology  Dr. Nazma Shaik
VTU
Chemistry  Gaurav Tiwari
APJAKTU
Physics
Get Started

## Browse

##### Maths Formulas 4 Followers

Most reacted comment
1 Comment authors Recent comment authors
Subscribe
Notify of Guest
KUCKOO B

I get a different answer for first example.
I got Q1 as 20.5
median 23 and
Q3 26 Guest
Yashitha

Hi
Same Guest
virat

yes

## Question Mark?

Have a doubt at 3 am? Our experts are available 24x7. Connect with a tutor instantly and get your concepts cleared in less than 3 steps.