Number Series

Geometric Series

Geometric Series form a very important section of the IBPS PO, SO, SBI Clerk and SO exams. A geometric series is also known as the geometric progression. It is a series formed by multiplying the first term by a number to get the second term, this process is continued until we get a number series in which each number is some multiple of the previous term. Such a progression increases swiftly and thus has the name geometric progression.

Suggested Videos

Play
Play
Play
previous arrow
next arrow
previous arrownext arrow
Slider

 

Geometric Series or Geometric Progression

Geometric Progression or a G.P. is formed by multiplying each number or member of a series by the same number. This number is called the constant ratio. In a G.P. the ratio of any two consecutive numbers is the same number that we call the constant ratio. It is usually denoted by the letter ‘r’. Thus if we have a G.P. say a1, a2, a3, …, an, the ratio of any two consecutive numbers within the series will be same. Therefore for the series present above, we shall have:

a3/a2 = r; where ‘r’ is the common ratio. In other words, if you know ‘r’ and the first term, you can generate the entire Geometric Progression.

Browse more Topics Under Number Series

Example 1: In a G.P., r = 2 and a = 1. Then the tenth term of the G.P. will be?

A) 16            B) 19           C) 26        D) 512

Answer: In a G.P. as we saw, each term is multiplied by the common ration ‘r’. To get the second term, the first term is multiplied by ‘r’. We get the third term by multiplying the first term by ‘r2‘. Similarly, we will get the fourth term by multiplying the first term by r3 and so on. Knowing this the above example becomes very easy. Since the first term is 1, we have to multiply it by 29 to get the tenth term = 512. So the tenth term of the G.P. = 512. The correct option thus is D) 512.

Sum of the Geometric Progression

Sometimes you will be given the series and asked to find the sum of the first few terms or the entire series. The sum is denoted by Sn; where ‘n’ is the number of the term up to which the sum is being found out. For example, the sum of the first ten terms will be denoted by S10. Here we will list important formulae to find out the sum of the first few terms. Let ‘a’ be the first term of a G.P. and ‘r’ be the common ratio, then the sum of the G.P. can be found out by the following formulae:

S= a (r-1)/ r-1,                    if r ≠1  and

S= an ,                                     if r = 1

Sum of infinite terms  of a G.P. in case of  -1 < r <1 is given by the following formula:

Sn= a/(1-r).

So there are three formulae depending on the value of ‘r’. We will see examples of each below.

Formula One S= a (r-1)/ (r-1)

Geometric Series

                                                                                                                                               Source: Youtube.com                                  

This formula is only valid when r ≠1. For example, consider the following series.

Example 2: Find the sum of the first 5 terms of the following series. Given that the series is finite: 3, 6, 12, …

A) 92           B) 24         C) 93/4         D) 27

Answer: The first step is to confirm that the series is actually a G.P. You can verify it by dividing the consecutive terms. Remember divide two sets of consecutive terms. For example, in the above example, 6/3 = 2 and 12/6 = 2. Hence the series is a G.P. with a common ratio or r = 2. Also, we see that a = 3, thus we can use the first formula and find the sum of any number of terms of such series.

To find the sum of the first 5 terms, we note that n = 5, a = 3, and r = 2. Thus we have:

S5 = 3(25 – 1)/(5 -1) = 93/4

Thus the option is C) 93/4.

Second And Third Formulae For The Sum

The second formula works only when r = 1. this is pretty straightforward. In this case, each term of the G.P. will be same. The following trick question may be asked from this concept.

Q 1: What type of series is the following sequence of ‘n’ numbers:

1, 1, 1, 1, 1, 1, 1, ….., 1

A) Arithmetic Progression

B) Simple Series

C) Mixed Series

D) Geometric Progression

Answer: The above series is clearly a Geometric Progression with the first term = 1 and the common ratio or r = 1 also. The sum of ‘n’ terms will be n(1) = n. Therefore, the correct option is D) Geometric Series.

The third formula is only applicable when the number of terms in the G.P. is infinite or in other words, the series doesn’t end anywhere. Also, the value of r should be between -1 and 1 but not equal to any of the two. -1 < r <1.

Practice Questions

Q 1: In a Geometric Progression, the first term a = 10. The ratio of two consecutive terms is 2. What will be the sixth term of the series?

A) 320         B) 640           C) 300          D) 298

Ans: A) 320.

Q 2: Find the sum of the first five terms of the G.P.: 5, 25, 125, 625,… The G.P. has a thousand terms in it.

A) 395         B) 3905         C) 935         D) 9305

Ans: B) 3905

Share with friends

Customize your course in 30 seconds

Which class are you in?
5th
6th
7th
8th
9th
10th
11th
12th
Get ready for all-new Live Classes!
Now learn Live with India's best teachers. Join courses with the best schedule and enjoy fun and interactive classes.
tutor
tutor
Ashhar Firdausi
IIT Roorkee
Biology
tutor
tutor
Dr. Nazma Shaik
VTU
Chemistry
tutor
tutor
Gaurav Tiwari
APJAKTU
Physics
Get Started

24
Leave a Reply

avatar
16 Comment threads
8 Thread replies
0 Followers
 
Most reacted comment
Hottest comment thread
20 Comment authors
Shriya NimjeAshishLokeshAkashPinky Choudhary Recent comment authors
  Subscribe  
newest oldest most voted
Notify of
Jagdish
Guest

5 7 31 283 ?

Parth Joshi
Guest
Parth Joshi

4533

ajay jadhav
Guest
ajay jadhav

3967

Priya
Guest
Priya

5×1+2=7
7×4+3=31
31×9+4=283
283×16+5=4533

mahu
Guest

ook

Venu
Guest
Venu

4533

anmol
Guest
anmol

4,8,24,28,84,88,_

Parth Joshi
Guest
Parth Joshi

264

Rahul
Guest
Rahul

4+4=8×3=24+4=28×3=84+4=88×3=264

Ashish
Guest
Ashish

84+100=184or 84+240=324

spy7
Guest
spy7

4+4=8
8×3=24
24+4=28
28×3=84
84+4=88
88×3=264

pavan kalyan
Guest
pavan kalyan

1 5 20 ???

lavanya lakhotia
Guest
lavanya lakhotia

60

anmol
Guest
anmol

1*3+2=5
5*3+5=20
20*3+7=67
can it not be like this???
if not then why?

Sathish
Guest

1×5=5
5×4=20
20×3=60

Saumit
Guest
Saumit

How

srashti
Guest
srashti

60

anmol
Guest
anmol

1*3+2=5
5*3+5=20
20*3+7=67
can it not be like this???
if not then why?

anmol
Guest
anmol

thats 20*3+8=68

Ashish
Guest
Ashish

1×2+3=5×3+5=20×4+7=86

Honey
Guest
Honey

16,4,68,12,?,4,30,1,9 plz reply i need it

ABCD
Guest
ABCD

GAY

Ayushi shukla
Guest
Ayushi shukla

2,3,3,5,10,13,?,43,172,177

Sneha
Guest
Sneha

4,5,5,7,9,13,10__,14

abcd
Guest
abcd

I think
Answer. 15
In series of odd numbers (4, 5,9,10,14) there is addition of 1 and 4 alternately.
And in series of even numbers (5, 7,13,?) There is addition of 2 and 6 alternately.

Janu
Guest
Janu

Find missing teams-1,5,14,?,44

Robin rathi
Guest
Robin rathi

Find the missing number of this series
60,50,60,90,41,_?

Options 1. 12
2. 18
3. 25
4. 30
5. none this above

Rohith
Guest
Rohith

26,4,20,10,14,16,8,22,2,28

Paulo
Guest

____,360,000,000,____, 389,000,000,____, 420,000,000

Sune Pedersen
Guest
Sune Pedersen

37 52 93 75 29 ? what is the math behind this

Sonali sahu
Guest
Sonali sahu

2,1,0,-3,-24,? Find the next number

Pinky Choudhary
Guest

Upper line 3 5 8 mid line 6 10 32 lower line 9 ? 50 me missing no. Kya h

Akash
Guest
Akash

94 101 115 136 164 ?

Ashish
Guest
Ashish

199

Lokesh
Guest
Lokesh

QID : 426 – In the following question, select the
missing number from the given alternatives.
41, 83, 167, 335, 671, ?
Options:
1) 1297
2) 1343
3) 1447
4) 1661

Ashish
Guest
Ashish

1343

Shriya Nimje
Guest
Shriya Nimje

50,50,54,72,?,220

Customize your course in 30 seconds

Which class are you in?
No thanks.